Publications by authors named "Chad J Pickens"

Cardiac myosin binding protein-C (cMyBP-C) is an important regulator of sarcomeric function. Reduced phosphorylation of cMyBP-C has been linked to compromised contractility in heart failure patients. Here, we used previously published cMyBP-C peptides 302A and 302S, surrogates of the regulatory phosphorylation site serine 302, as a tool to determine the effects of modulating the dephosphorylation state of cMyBP-C on cardiac contraction and relaxation in experimental heart failure (HF) models in vitro.

View Article and Find Full Text PDF

Baseline separation and analysis of multicomponent mixtures of closely related pharmaceuticals using single column selectivity can often be challenging, requiring the combination of orthogonal stationary and mobile phase methods to monitor all the species and optimize reaction outcomes. In recent years, two-dimensional liquid chromatography (2D-LC) has become a valuable tool for improving peak capacity and selectivity. Though powerful, standard 2D-LC instrumentation and software can often lead to tedious method development and has a requirement for very specific expertise that is poorly suited for a fast-paced industrial environment.

View Article and Find Full Text PDF

The analysis of complex mixtures of closely related species is quickly becoming a bottleneck in the development of new drug substances, reflecting the ever-increasing complexity of both fundamental biology and the therapeutics used to treat disease. Two-dimensional liquid chromatography (2D-LC) is emerging as a powerful tool to achieve substantial improvements in peak capacity and selectivity. However, 2D-LC suffers from several limitations, including the lack of automated multicolumn setups capable of combining multiple columns in both dimensions.

View Article and Find Full Text PDF

Insulin oligosaccharide conjugates hold promise as potential glucose-responsive insulins (GRIs), which can improve the therapeutic index of insulins and mitigate the risk of hypoglycemia. A key challenge for the analytical development of such molecules is finding an efficient method to characterize the purity and impurities of conjugated insulins. Using the S-Matrix Fusion QbD-ultrahigh performance liquid chromatography (UHPLC) integrated system, we were able to quickly screen and develop two short UHPLC methods.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is an autoimmune disorder which develops when insulin-producing, pancreatic beta cells are destroyed by an aberrant immune response. Current therapies for T1D either treat symptoms or cause global immunosuppression, which leave patients at risk of developing long-term complications or vulnerable to foreign pathogens. Antigen-specific immunotherapies have emerged as a selective approach for autoimmune diseases by inducing tolerance while mitigating global immunosuppression.

View Article and Find Full Text PDF

Multiple sclerosis represents the world's most common cause of neurological disability in young people and is attributed to a loss of immune tolerance toward proteins of the myelin sheath. Typical treatment options for MS patients involve immunomodulatory drugs, which act nonspecifically, resulting in global immunosuppression. The study discussed herein aims to demonstrate the efficacy of antigen-specific immunotherapies involving the conjugation of disease causing autoantigen, PLP, and a potent immunosuppressant, dexamethasone.

View Article and Find Full Text PDF

Antigen valency plays a fundamental role in directing the nature of an immune response to be stimulatory or tolerogenic. Soluble antigen arrays (SAgAs) are an antigen-specific immunotherapy that combats autoimmunity through the multivalent display of autoantigen. Although mechanistic studies have shown SAgAs to induce T- and B-cell anergy, the effect of SAgA valency has never been experimentally tested.

View Article and Find Full Text PDF

Autoreactive lymphocytes that escape central immune tolerance may be silenced via an endogenous peripheral tolerance mechanism known as anergy. Antigen-specific therapies capable of inducing anergy may restore patients with autoimmune diseases to a healthy phenotype while avoiding deleterious side effects associated with global immunosuppression. Inducing anergy in B cells may be a particularly potent intervention, as B cells can contribute to autoimmune diseases through multiple mechanisms and offer the potential for direct antigen-specific targeting through the B cell receptor (BCR).

View Article and Find Full Text PDF

Interrogating biological systems is often limited by access to biological probes. The emergence of "click chemistry" has revolutionized bioconjugate chemistry by providing facile reaction conditions amenable to both biologic molecules and small molecule probes such as fluorophores, toxins, or therapeutics. One particularly popular version is the copper-catalyzed azide-alkyne cycloaddition (AAC) reaction, which has spawned new alternatives such as the strain-promoted azide-alkyne cycloaddition reaction, among others.

View Article and Find Full Text PDF

Current therapies for autoimmune diseases focus on treating the symptoms rather than the underlying disease cause. A major setback in improving current therapeutics for autoimmunity is the lack of antigen specificity. Successful antigen-specific immunotherapy (ASIT) would allow for improved treatment of autoimmune diseases.

View Article and Find Full Text PDF

A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgA), consisting of a hyaluronic acid (HA) linear polymer backbone cografted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgA, employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro.

View Article and Find Full Text PDF