Publications by authors named "Chad Glen"

The complexity of morphogenesis poses a fundamental challenge to understanding the mechanisms governing the formation of biological patterns and structures. Over the past century, numerous processes have been identified as critically contributing to morphogenetic events, but the interplay between the various components and aspects of pattern formation have been much harder to grasp. The combination of traditional biology with mathematical and computational methods has had a profound effect on our current understanding of morphogenesis and led to significant insights and advancements in the field.

View Article and Find Full Text PDF

In the original version of this Article, an incorrect DOI number was provided in the Code Availability statement regarding the deposition of the computational model. The correct DOI is 10.5281/zenodo.

View Article and Find Full Text PDF

The initiation of heterogeneity within a population of phenotypically identical progenitors is a critical event for the onset of morphogenesis and differentiation patterning. Gap junction communication within multicellular systems produces complex networks of intercellular connectivity that result in heterogeneous distributions of intracellular signaling molecules. In this study, we investigate emergent systems-level behavior of the intercellular network within embryonic stem cell (ESC) populations and corresponding spatial organization during early neural differentiation.

View Article and Find Full Text PDF

In this paper we describe a combination of paper-based sensors and a novel smart-phone application for on-site quantification of colorimetric readouts as an ultra-low cost solution to monitoring water quality. The system utilizes a paper-based analytical device (μPAD) that produces a colorimetric signal that is dependent on the concentration of a specific target; a cell phone equipped with a camera for capturing images of two μPADs - one tested with a water sample and the other tested with clean water that is used as a control; and an on-site image processing app that uses a novel algorithm for quantifying color intensity and relating this to contaminant concentration. The cell phone app utilizes a pixel counting algorithm that performs with less bias and user subjectivity than the typically used lab-based software, ImageJ.

View Article and Find Full Text PDF