Unmethylated cytosine-guanine oligodeoxynucleotides (CpG ODNs) have a storied history as agonists for Toll-like receptor 9 (TLR9). CpG ODNs have shown promising antitumor effects in preclinical studies by inducing potent proinflammatory immune responses. However, clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure to CpG ODNs.
View Article and Find Full Text PDFNext-generation cancer immunotherapies may utilize immunostimulants to selectively activate the host immune system against tumor cells. Checkpoint inhibitors (CPIs) like anti-PD1/PDL-1 that inhibit immunosuppression have shown unprecedented success but are only effective in the 20-30% of patients that possess an already "hot" (immunogenic) tumor. In this regard, intratumoral (IT) injection of immunostimulants is a promising approach since they can work synergistically with CPIs to overcome the resistance to immunotherapies by inducing immune stimulation in the tumor.
View Article and Find Full Text PDFA new pH-activated polymer chelate of cisplatin was synthesized using a scalable and green aqueous technique. Synthesis of the chelate was based on formation of a 6-member ring of platinum(II) with acetyl-homo-Lysine (Ac-homo-Lys), which was accomplished under completely aqueous conditions using a traceless photocleavable protection chemistry. Synthesis preceded by, first, amidation of a photocaged homo-Ac-Lys with hyaluronic acid (HA) in water using a p-hydroxyphenacyl (pHP) group as the photoremovable protecting group, followed by reaction of cisplatin (diaqua form) in water to form the reversible chelate.
View Article and Find Full Text PDFOpioids are widely used to treat millions suffering from pain, but their analgesic utility is limited due to associated side effects. Herein we report the development and evaluation of a chemical probe exhibiting analgesia and reduced opioid-induced side effects. This compound, kurkinorin (5), is a potent and selective μ-opioid receptor (MOR) agonist (EC = 1.
View Article and Find Full Text PDFThe neoclerodane diterpene salvinorin A, found in the leaves of Salvia divinorum, is a potent κ-opioid receptor agonist, making it an attractive scaffold for development into a treatment for substance abuse. Although several successful semisynthetic studies have been performed to elucidate structure-activity relationships, the lack of analogues with substitutions to the furan ring of salvinorin A has prevented a thorough understanding of its role in binding to the κ-opioid receptor. Herein we report the synthesis of several salvinorin A derivatives with modified furan rings.
View Article and Find Full Text PDFThe success rate for central nervous system (CNS) drug candidates in the clinic is relatively low compared to the industry average across other therapeutic areas. Penetration through the blood-brain barrier (BBB) to reach the therapeutic target is a major obstacle in development. The rapid CNS penetration of salvinorin A has suggested that the neoclerodane nucleus offers an excellent scaffold for developing antiproliferative compounds that enter the CNS.
View Article and Find Full Text PDFThere is considerable evidence to suggest that drug actions at the κ-opioid receptor (KOR) may represent a means to control pain perception and modulate reward thresholds. As a G protein-coupled receptor (GPCR), the activation of KOR promotes Gαi/o protein coupling and the recruitment of β-arrestins. It has become increasingly evident that GPCRs can transduce signals that originate independently via G protein pathways and β-arrestin pathways; the ligand-dependent bifurcation of such signaling is referred to as "functional selectivity" or "signaling bias.
View Article and Find Full Text PDFThe kappa opioid receptor (KOPR) has been identified as a potential drug target to prevent or alter the course of mood, anxiety and addictive disorders or reduce response to stress. In a search for highly potent and selective KOPR partial agonists as pharmacological tools, we have modified 12-epi-salvinorin A, a compound which we have previously observed to be a KOPR partial agonist. Five analogues of 12-epi-salvinorin A were synthesized and their effects on G protein activation as well as β-arrestin2 recruitment were evaluated.
View Article and Find Full Text PDFOpioids are the most effective analgesic drugs for the management of moderate or severe pain, yet their clinical use is often limited because of the onset of adverse side effects. Drugs in this class produce most of their physiological effects through activation of the μ opioid receptor; however, an increasing number of studies demonstrate that different opioids, while presumably acting at this single receptor, can activate distinct downstream responses, a phenomenon termed functional selectivity. Functional selectivity of receptor-mediated events can manifest as a function of the drug used, the cellular or neuronal environment examined, or the signaling or behavioral measure recorded.
View Article and Find Full Text PDFMorphine and other opiates mediate their effects through activation of the μ-opioid receptor (MOR), and regulation of the MOR has been shown to critically affect receptor responsiveness. Activation of the MOR results in receptor phosphorylation, β-arrestin recruitment, and internalization. This classical regulatory process can differ, depending on the ligand occupying the receptor.
View Article and Find Full Text PDFManagement of chronic pain continues to represent an area of great unmet biomedical need. Although opioid analgesics are typically embraced as the mainstay of pharmaceutical interventions in this area, they suffer from substantial liabilities that include addiction and tolerance, as well as depression of breathing, nausea and chronic constipation. Because of their suboptimal therapeutic profile, the search for non-opioid analgesics to replace these well-established therapeutics is an important pursuit.
View Article and Find Full Text PDFSalvinorin A is a psychoactive natural product that has been found to be a potent and selective kappa opioid receptor agonist in vitro and in vivo. The activity of salvinorin A is unusual compared to other opioids such as morphine in that it mediates potent kappa opioid receptor signaling yet leads to less receptor downregulation than observed with other kappa agonists. Our initial chemical modifications of salvinorin A have yielded one analogue, herkinorin ( 1c), with high affinity at the microOR.
View Article and Find Full Text PDF