Small GTPases of the Ras subfamily are best known for their role as proto-oncoproteins, while their function during microbial infection has remained elusive. Here, we show that Legionella pneumophila hijacks the small GTPase NRas to the Legionella-containing vacuole (LCV) surface. A CRISPR interference screen identifies a single L.
View Article and Find Full Text PDFBLOC-one-related complex (BORC) is a multiprotein complex composed of eight subunits named BORCS1-8. BORC associates with the cytosolic face of lysosomes, where it sequentially recruits the small GTPase ARL8 and kinesin-1 and -3 microtubule motors to promote anterograde transport of lysosomes toward the peripheral cytoplasm in non-neuronal cells and the distal axon in neurons. The physiological and pathological importance of BORC in humans, however, remains to be determined.
View Article and Find Full Text PDFRecycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown.
View Article and Find Full Text PDFExosomes are small vesicles that are secreted from cells to dispose of undegraded materials and mediate intercellular communication. A major source of exosomes is intraluminal vesicles within multivesicular endosomes that undergo exocytic fusion with the plasma membrane. An alternative fate of multivesicular endosomes is fusion with lysosomes, resulting in degradation of the intraluminal vesicles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Genetic variation at the () locus contributes to an enhanced risk of familial and sporadic Parkinson's disease. Previous data have demonstrated that recruitment to various membranes of the endolysosomal system results in LRRK2 activation. However, the mechanism(s) underlying LRRK2 activation at endolysosomal membranes and the cellular consequences of these events are still poorly understood.
View Article and Find Full Text PDFLysosomes are membrane-bound organelles that degrade diverse biomolecules and regulate a multitude of other essential processes including cell growth and metabolism, signaling, plasma membrane repair and infection. Such diverse functions of lysosomes are highly coordinated in space and time and are therefore tightly coupled to the directional transport of the organelles within the cytoplasm. Thus, robust quantitative assessments of lysosome positioning within the cell provide a valuable tool for researchers interested in understanding these multifunctional organelles.
View Article and Find Full Text PDFThe small GTPase ARL8 associates with endolysosomes, leading to the recruitment of several effectors that couple endolysosomes to kinesins for anterograde transport along microtubules, and to tethering factors for eventual fusion with other organelles. Herein we report the identification of the RUN- and FYVE-domain-containing proteins RUFY3 and RUFY4 as ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin for retrograde transport along microtubules. Using various methodologies, we find that RUFY3 and RUFY4 interact with both GTP-bound ARL8 and dynein-dynactin.
View Article and Find Full Text PDFThe multispanning membrane protein ATG9A is a scramblase that flips phospholipids between the two membrane leaflets, thus contributing to the expansion of the phagophore membrane in the early stages of autophagy. Herein, we show that depletion of ATG9A does not only inhibit autophagy but also increases the size and/or number of lipid droplets in human cell lines and C. elegans.
View Article and Find Full Text PDFThe ability of endolysosomal organelles to move within the cytoplasm is essential for the performance of their functions. Long-range movement involves coupling of the endolysosomes to motor proteins that carry them along microtubule tracks. This movement is influenced by interactions with other organelles, but the mechanisms involved are incompletely understood.
View Article and Find Full Text PDFGenetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). However, the biological functions of LRRK2 remain incompletely understood. Here, we report that LRRK2 is recruited to lysosomes after exposure of cells to the lysosome membrane-rupturing agent LLOME.
View Article and Find Full Text PDFThe heterotetrameric adaptor protein complex 4 (AP-4) is a component of a protein coat associated with the -Golgi network (TGN). Mutations in AP-4 subunits cause a complicated form of autosomal-recessive hereditary spastic paraplegia termed AP-4-deficiency syndrome. Recent studies showed that AP-4 mediates export of the transmembrane autophagy protein ATG9A from the TGN to preautophagosomal structures.
View Article and Find Full Text PDFMacropinocytosis is an actin-driven form of clathrin-independent endocytosis that generates an enlarged structure, the macropinosome. Although many studies focus on signaling molecules and phosphoinositides involved in initiating macropinocytosis, the commitment to forming a macropinosome and the handling of that membrane have not been studied in detail. Here we show in HT1080 cells, a human fibrosarcoma cell line, a requirement for microtubules, dynein, the JIP3 microtubule motor scaffold protein, and Arf6, a JIP3 interacting protein, for the formation and inward movement of the macropinosome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2017
Microbial pathogens employ sophisticated virulence strategies to cause infections in humans. The intracellular pathogen encodes RidL to hijack the host scaffold protein VPS29, a component of retromer and retriever complexes critical for endosomal cargo recycling. Here, we determined the crystal structure of RidL in complex with the human VPS29-VPS35 retromer subcomplex.
View Article and Find Full Text PDFMammalian cells express three Class II nonmuscle myosins (NM): NM2A, NM2B, and NM2C. The three NM2s have well established essential roles in cell motility, adhesion, and cytokinesis and less well defined roles in vesicle transport and other processes that would require association of NM2s with cell membranes. Previous evidence for the mechanism of NM2-membrane association includes direct interaction of NM2s with membrane lipids and indirect interaction by association of NM2s with membrane-bound F-actin or peripheral membrane proteins.
View Article and Find Full Text PDFIncreasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria.
View Article and Find Full Text PDFClathrin independent endocytosis (CIE) is a form of endocytosis present in all cells that mediates the entry of nutrients, macromolecules and membrane proteins into cells. When compared to clathrin-dependent endocytosis (CDE), however, much less is known about the machinery involved in forming CIE endosomes. One way to distinguish CIE from CDE has been to deplete cells of coat proteins involved in CDE such as clathrin or the dynamin GTPase, leading to a block of CDE but not CIE.
View Article and Find Full Text PDFAirway occlusion in obstructive airway diseases is caused in part by the overproduction of secretory mucin glycoproteins through the up-regulation of mucin (MUC) genes by inflammatory mediators. Some pharmacological agents, including the glucocorticoid dexamethasone (Dex), repress mucin concentrations in lung epithelial cancer cells. Here, we show that Dex reduces the expression of MUC5AC, a major airway mucin gene, in primary differentiated normal human bronchial epithelial (NHBE) cells in a dose-dependent and time-dependent manner, and that the Dex-induced repression is mediated by the glucocorticoid receptor (GR) and two glucocorticoid response elements (GREs) in the MUC5AC promoter.
View Article and Find Full Text PDFInfect Disord Drug Targets
February 2012
A wide variety of viruses cause significant morbidity and mortality in humans. However, targeted antiviral therapies have been developed for only a subset of these viruses, with the majority of currently licensed antiviral drugs targeting viral entry, replication or exit steps during the viral life cycle. Due to increasing emergence of antiviral drug resistant viruses, the isolation of multiple viral subtypes, and toxicities of existing therapies, there remains an urgent need for the timely development of novel antiviral agents, including those targeting host factors essential for viral replication.
View Article and Find Full Text PDFEndoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis.
View Article and Find Full Text PDFThe human cytomegalovirus (HCMV) protein UL37 exon 1 (pUL37x1), also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), sequentially traffics from the endoplasmic reticulum (ER) through mitochondrion-associated membranes (MAMs) to the outer mitochondrial membrane (OMM), where it robustly inhibits apoptosis. Here, we report the association of pUL37x1/vMIA with internal lipid rafts (LRs) in the ER/MAM. The MAM, which serves as a site for lipid transfer and calcium signaling to mitochondria, is enriched in detergent-resistant membrane (DRM)-forming lipids, including cholesterol and ceramide, which are found in lower concentrations in the bulk ER.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria.
View Article and Find Full Text PDFHuman cytomegalovirus UL37 antiapoptotic proteins, including the predominant UL37 exon 1 protein (pUL37x1), traffic sequentially from the endoplasmic reticulum (ER) through the mitochondrion-associated membrane compartment to the mitochondrial outer membrane (OMM), where they inactivate the proapoptotic activity of Bax. We found that widespread mitochondrial distribution occurs within 1 h of pUL37x1 synthesis. The pUL37x1 mitochondrial targeting signal (MTS) spans its first antiapoptotic domain (residues 5 to 34) and consists of a weak hydrophobicity leader (MTSalpha) and proximal downstream residues (MTSbeta).
View Article and Find Full Text PDFBy exploiting host cell machineries, viruses provide powerful tools for gaining insight into cellular pathways. Proteins from two unrelated viruses, human CMV (HCMV) and HCV, are documented to traffic sequentially from the ER into mitochondria, probably through the mitochondria-associated membrane (MAM) compartment. The MAM are sites of ER-mitochondrial contact enabling the direct transfer of membrane bound lipids and the generation of high calcium (Ca2+) microdomains for mitochondria signalling and responses to cellular stress.
View Article and Find Full Text PDFIncreasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria.
View Article and Find Full Text PDFThe human cytomegalovirus (HCMV) UL37 exon 1 protein (pUL37x1), also known as vMIA, is the predominant UL37 isoform during permissive infection. pUL37x1 is a potent antiapoptotic protein, which prevents cytochrome c release from mitochondria. The UL37x1 NH(2)-terminal bipartite localization signal, which remains uncleaved, targets UL37 proteins to the endoplasmic reticulum (ER) and then to mitochondria.
View Article and Find Full Text PDF