Publications by authors named "Chad D Walls"

The protein-tyrosine phosphatase SHP2 is an allosteric enzyme critical for cellular events downstream of growth factor receptors. Mutations in the gene have been linked to many different types of human diseases, including developmental disorders, leukemia, and solid tumors. Unlike most SHP2-activating mutations, the T507K substitution in SHP2 is unique in that it exhibits oncogenic Ras-like transforming activity.

View Article and Find Full Text PDF

Aim: We evaluated the safety of baricitinib in an East Asian (EA) patient population with moderate-to-severely active rheumatoid arthritis (RA), through an integrated sub-analysis of data from the overall baricitinib RA clinical program.

Methods: Data from EA patients who received any dose of baricitinib from five completed studies (1 Phase 2, 4 Phase 3) and an ongoing long-term extension study were pooled up to 1 September, 2016. Exposure-adjusted incidence rates (EAIR) and incidence rates (IRs), both per 100 patient-years (PY), were calculated.

View Article and Find Full Text PDF

Objective: To assess the frequency of cardiovascular and venous thromboembolic events in clinical studies of baricitinib, an oral, selective JAK1 and JAK2 inhibitor approved in more than 50 countries for the treatment of moderately-to-severely active rheumatoid arthritis (RA).

Methods: Data were pooled from 9 RA studies. Placebo comparison up to 24 weeks included data from 6 studies.

View Article and Find Full Text PDF

The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition.

View Article and Find Full Text PDF

Phosphatase of regenerating liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when in excess. To date, the molecular basis for PRL3 function remains an enigma, making efforts at distilling a concerted mechanism for PRL3-mediated metastatic dissemination very difficult. We previously discovered that PRL3 expressing cells exhibit a pronounced increase in protein tyrosine phosphorylation.

View Article and Find Full Text PDF

Background: The protein tyrosine phosphatase PRL-1 represents a putative oncogene with wide-ranging cellular effects. Overexpression of PRL-1 can promote cell proliferation, survival, migration, invasion, and metastasis, but the underlying mechanisms by which it influences these processes remain poorly understood.

Methodology: To increase our comprehension of PRL-1 mediated signaling events, we employed transcriptional profiling (DNA microarray) and proteomics (mass spectrometry) to perform a thorough characterization of the global molecular changes in gene expression that occur in response to stable PRL-1 overexpression in a relevant model system (HEK293).

View Article and Find Full Text PDF

SHP2 is an allosteric phosphatase essential for growth factor-mediated Ras activation. Germ-line mutations in SHP2 cause clinically similar LEOPARD and Noonan syndromes, two of several autosomal-dominant conditions characterized by gain-of-function mutations in the Ras pathway. Interestingly, Noonan syndrome SHP2 mutants are constitutively active, whereas LEOPARD syndrome SHP2 mutants exhibit reduced phosphatase activity.

View Article and Find Full Text PDF

Phosphatases of the regenerating liver (PRL) play oncogenic roles in cancer development and metastasis. Although previous studies indicate that PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways, the mechanism by which it activates these signaling events remains unclear. We have identified a PRL-1-binding peptide (Peptide 1) that shares high sequence identity with a conserved motif in the Src homology 3 (SH3) domain of p115 Rho GTPase-activating protein (GAP).

View Article and Find Full Text PDF

A homotyrosine based seleninic acid irreversibly inhibits protein tyrosine phosphatases by forming a covalent selenosulfide linkage with the active site cysteine sulfhydryl specifically. The details of the event are revealed by model synthetic studies and by kinetic, mass spectrometric, and crystallographic characterization.

View Article and Find Full Text PDF

Phosphatase of regenerating liver 3 (PRL3) is up-regulated in cancer metastases. However, little is known of PRL3-mediated cellular signaling pathways. We previously reported that elevated PRL3 expression increases Src kinase activity, which likely contributes to the increased tumorigenesis and metastasis potential of PRL3.

View Article and Find Full Text PDF

2-Methoxyestradiol is an estradiol metabolite with significant antiproliferative and antiangiogenic activity independent of estrogen receptor status. To identify a molecular basis for acquired 2-methoxyestradiol resistance, we generated a stable 2-methoxyestradiol-resistant (2ME2R) MDA-MB-435 human cancer cell line by stepwise exposure to increasing 2-methoxyestradiol concentrations. 2ME2R cells maintained in the presence of the drug and W435 cells maintained in the absence of the drug showed 32.

View Article and Find Full Text PDF

N-acetylmuramoyl-l-alanine amidase (NAMLAA) hydrolyzes bacterial peptidoglycan and is present in human serum. A peptidoglycan-recognition protein 2 (PGLYRP2) is expressed in human liver and has N-acetylmuramoyl-l-alanine amidase activity. Here, we determined the amino acid sequences of human serum NAMLAA and liver PGLYRP2 and tested the hypothesis that serum NAMLAA and PGLYRP2 are the same protein.

View Article and Find Full Text PDF