Publications by authors named "Chad D Knights"

Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides.

View Article and Find Full Text PDF

The ubiquitin-like molecule, SUMO-1, a small protein essential for a variety of biological processes, is covalently conjugated to many intracellular proteins, especially to regulatory components of the transcriptional machinery, such as histones and transcription factors. Sumoylation provides either a stimulatory or an inhibitory signal for proliferation and for transcription, but the molecular mechanisms by which SUMO-1 achieves such versatility of effects are incompletely defined. The tumor suppressor and transcription regulator p53 is a relevant SUMO-1 target.

View Article and Find Full Text PDF

Axon regeneration is substantially regulated by gene expression and cytoskeleton remodeling. Here we show that the tumor suppressor protein p53 is required for neurite outgrowth in cultured cells including primary neurons as well as for axonal regeneration in mice. These effects are mediated by two newly identified p53 transcriptional targets, the actin-binding protein Coronin 1b and the GTPase Rab13, both of which associate with the cytoskeleton and regulate neurite outgrowth.

View Article and Find Full Text PDF

The activity of the p53 gene product is regulated by a plethora of posttranslational modifications. An open question is whether such posttranslational changes act redundantly or dependently upon one another. We show that a functional interference between specific acetylated and phosphorylated residues of p53 influences cell fate.

View Article and Find Full Text PDF

Mdm2 gene amplification occurs in benign and chemotherapy-responsive malignant tumors with wtp53 genes as well as in breast and epithelial cancers. Mdm2 amplification in benign tumors suggests that it is not sufficient for p53 inactivation in cancer, implying that other defects in the p53 pathway are required for malignancy. We investigated mechanisms of wtp53 protein inactivation in malignant conversion of epithelial cells by comparing clonally related initiated cells with their derivative cancerous cells that have mdm2 amplification.

View Article and Find Full Text PDF