Publications by authors named "Chad Brokopp"

Aims: We aimed to identify a novel biomarker involved in the early events leading to an acute coronary syndrome (ACS) and evaluate its role in diagnosis and risk stratification.

Methods And Results: Biomarker identification was based on gene expression profiling. In coronary thrombi of ACS patients, cysteine-rich angiogenic inducer 61 (Cyr61, CCN1) gene transcripts were highly up-regulated compared with peripheral mononuclear cells.

View Article and Find Full Text PDF

To date, clinical success of cardiac cell-therapies remains limited. To enhance the cardioreparative properties of stem cells, the concept of lineage-specification through cardiopoietic-guidance has been recently suggested. However, so far, only results from murine studies and from a clinical pilot-trial in chronic heart-failure (CHF) are available, while systematic evidence of its therapeutic-efficacy is still lacking.

View Article and Find Full Text PDF

Aims: Regulatory T cells (Treg) exert anti-inflammatory and atheroprotective effects in experimental atherosclerosis. Treg can be induced against specific antigens using immunization strategies associated with clonal restriction. No data exist on Treg in combination with clonal restriction of T cells in patients with acute coronary syndromes (ACS).

View Article and Find Full Text PDF

Sirt3 is a mitochondrial NAD(+)-dependent deacetylase that governs mitochondrial metabolism and reactive oxygen species homeostasis. Sirt3 deficiency has been reported to accelerate the development of the metabolic syndrome. However, the role of Sirt3 in atherosclerosis remains enigmatic.

View Article and Find Full Text PDF

Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications.

View Article and Find Full Text PDF

Heart valve tissue engineering based on decellularized xenogenic or allogenic starter matrices has shown promising first clinical results. However, the availability of healthy homologous donor valves is limited and xenogenic materials are associated with infectious and immunologic risks. To address such limitations, biodegradable synthetic materials have been successfully used for the creation of living autologous tissue-engineered heart valves (TEHVs) in vitro.

View Article and Find Full Text PDF

Cardiac stem cell therapy has been proposed as a therapy option to treat the diseased myocardium. However, the low retention rate of transplanted single-cell suspensions remains a major issue of current therapy strategies. Therefore, the concept of scaffold-free cellular self-assembly into three-dimensional microtissues (3D-MTs) prior to transplantation may be beneficial to enhance retention and survival.

View Article and Find Full Text PDF

Objectives: This study sought to examine the effects and underlying mechanisms of systemic VEGF inhibition in experimental atherosclerosis and aortic endothelial cells.

Background: Pharmacological inhibition of vascular endothelial growth factor (VEGF), a major mediator of angiogenesis, has become a widely applied treatment of certain cancers and multiple ocular diseases including age-related macular degeneration. However, recent clinical trials raise concern for systemic vascular adverse effects, prompting the Food and Drug Administration to revoke the approval of bevacizumab for metastatic breast cancer.

View Article and Find Full Text PDF

Although stem-cell therapies have been suggested for cardiac-regeneration after myocardial-infarction (MI), key-questions regarding the in-vivo cell-fate remain unknown. While most available animal-models require immunosuppressive-therapy when applying human cells, the fetal-sheep being pre-immune until day 75 of gestation has been proposed for the in-vivo tracking of human cells after intra-peritoneal transplantation. We introduce a novel intra-uterine myocardial-infarction model to track human mesenchymal stem cells after direct intra-myocardial transplantation into the pre-immune fetal-sheep.

View Article and Find Full Text PDF

Objectives: This study sought to investigate the combination of transcatheter aortic valve implantation and a novel concept of stem cell-based, tissue-engineered heart valves (TEHV) comprising minimally invasive techniques for both cell harvest and valve delivery.

Background: TAVI represents an emerging technology for the treatment of aortic valve disease. The used bioprostheses are inherently prone to calcific degeneration and recent evidence suggests even accelerated degeneration resulting from structural damage due to the crimping procedures.

View Article and Find Full Text PDF

Living autologous tissue engineered vascular-grafts (TEVGs) with growth-capacity may overcome the limitations of contemporary artificial-prostheses. However, the multi-step in vitro production of TEVGs requires extensive ex vivo cell-manipulations with unknown effects on functionality and quality of TEVGs due to an accelerated biological age of the cells. Here, the impact of biological cell-age and tissue-remodeling capacity of TEVGs in relation to their clinical long-term functionality are investigated.

View Article and Find Full Text PDF

Prenatal heart valve interventions aiming at the early and systematic correction of congenital cardiac malformations represent a promising treatment option in maternal-fetal care. However, definite fetal valve replacements require growing implants adaptive to fetal and postnatal development. The presented study investigates the fetal implantation of prenatally engineered living autologous cell-based heart valves.

View Article and Find Full Text PDF

Objective: The purpose of this study was to assess the technical feasibility of a fetal trans-apical stent delivery into the pulmonary artery using a novel hybrid-intervention technique as a possible route for prenatal minimally invasive heart-valve-implantation approaches.

Methods: Pregnant Pre-Alp sheep between 122 and 128 days' gestation (n = 3) underwent a midline laparotomy. The fetus was left in utero or partially externalized and its chest was opened via a left-sided minithoracotomy.

View Article and Find Full Text PDF

Aims: A living heart valve with regeneration capacity based on autologous cells and minimally invasive implantation technology would represent a substantial improvement upon contemporary heart valve prostheses. This study investigates the feasibility of injectable, marrow stromal cell-based, autologous, living tissue engineered heart valves (TEHV) generated and implanted in a one-step intervention in non-human primates.

Methods And Results: Trileaflet heart valves were fabricated from non-woven biodegradable synthetic composite scaffolds and integrated into self-expanding nitinol stents.

View Article and Find Full Text PDF
Article Synopsis
  • FAP expression is significantly higher in advanced atherosclerotic plaques and thin-cap lesions compared to earlier stages of atherosclerosis and healthy tissue.
  • FAP is expressed by human aortic smooth muscle cells and its expression is influenced by macrophage-derived TNFα.
  • FAP facilitates collagen degradation, contributing to the vulnerability of thin fibrous caps in atherosclerotic plaques, increasing the risk of plaque rupture.
View Article and Find Full Text PDF

Tissue engineering aims at the creation of living neo-tissues identical or close to their native human counterparts. As basis of this approach, temporary biodegradable supporter matrices are fabricated in the shape of a desired construct, which promote tissue strength and provide functionality until sufficient neo-tissue is formed. Besides fully synthetic polymer-based scaffolds, decellularized biological tissue of xenogenic or homogenic origin can be used.

View Article and Find Full Text PDF

The M-band is the prominent cytoskeletal structure that cross-links the myosin and titin filaments in the middle of the sarcomere. To investigate M-band alterations in heart disease, we analyzed the expression of its main components, proteins of the myomesin family, in mouse and human cardiomyopathy. Cardiac function was assessed by echocardiography and compared to the expression pattern of myomesins evaluated with RT-PCR, Western blot, and immunofluorescent analysis.

View Article and Find Full Text PDF

Object: Cerebral cavernous malformations (CCMs) are among the most prevalent cerebrovascular malformations, and endothelial cells seem to play a major role in the disease. However, the underlying mechanisms, including endothelial intercellular communication, have not yet been fully elucidated. In this article, the authors focus on the endothelial junction proteins CD31, VE-cadherin, and occludin as important factors for functional cell-cell contacts known as vascular adhesion molecules and adherence and tight junctions.

View Article and Find Full Text PDF

Using a custom-built, implantable pulse generator, we studied the effects of small pulsed currents on the viability on rat aortic-derived cells (RAOC) in vitro. The pulsed currents (0.37A/m(2)) underwent apoptosis within 24h as shown by the positive staining for cleaved caspase-3 and classically apoptotic morphology.

View Article and Find Full Text PDF

Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS).

View Article and Find Full Text PDF

To study the affect of mechanical stimuli on human laryngeal fibroblasts, we developed bioreactors capable of vibrating cell seeded substrates at frequencies and displacements comparable to measured phonation values in human subjects. In addition, we developed a means of harvesting the secreted matrix as a bulk biomaterial by removing the polymer foam using an organic solvent. Using the system human derived laryngeal fibroblasts were subjected to vibrational stimuli (100 Hz) for 1-21 days.

View Article and Find Full Text PDF