In this study, we developed a prototype animal PET by applying several novel technologies to use solid-state photomultiplier (SSPM) arrays to measure the depth of interaction (DOI) and improve imaging performance. Each PET detector has an 8 × 8 array of about 1.9 × 1.
View Article and Find Full Text PDFDepth of Interaction (DOI) information can improve quality of reconstructed images acquired from Positron Emission Tomography (PET), especially in high resolution and compact scanners dedicated for breast, brain, or small animal imaging applications. Additionally, clinical scanners with time of flight capability can also benefit from DOI information. One of the most promising methods of determining DOI in a crystal involves reading the signal from two ends of a scintillation crystal, and calculating the signal ratio between the two detectors.
View Article and Find Full Text PDFPurpose: Positron emission tomography (PET) detectors that use a dual-ended-scintillator readout to measure depth-of-interaction (DOI) must have an accurate DOI function to provide the relationship between DOI and signal ratios to be used for detector calibration and recalibration. In a previous study, the authors used a novel and simple method to accurately and quickly measure DOI function by irradiating the detector with an external uniform flood source; however, as a practical concern, implementing external uniform flood sources in an assembled PET system is technically challenging and expensive. In the current study, therefore, the authors investigated whether the same method could be used to acquire DOI function from scintillator-generated (i.
View Article and Find Full Text PDFIEEE Trans Nucl Sci
December 2011
An eight-channel readout ASIC has been developed for reading output signals from solid-state photomultipliers for positron emission tomography applications. This ASIC converts both the signal charge and occurring time to digital timing pulses so that only a time-to-digital converter is required for further signal processing. This provides the advantages of simplified circuit design, reduced power consumption, and suitability for applications that have a large number of readout channels.
View Article and Find Full Text PDFA new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted.
View Article and Find Full Text PDF