Background: Vascular smooth muscle cells (VSMCs) exhibit phenotypic plasticity, promoting vascular calcification and increasing cardiovascular risk. Changes in VSMC intracellular calcium ([Ca 2+ ] i ) are a major determinant of plasticity, but little is known about changes in [Ca 2+ ] i in chronic kidney disease (CKD). We have previously demonstrated such plasticity in aortas from our rat model of CKD and therefore sought to examine changes in [Ca 2+ ] i during CKD progression.
View Article and Find Full Text PDFCalcium oxalate monohydrate (COM) stones are often resistant to breakage using shock wave (SW) lithotripsy. It would be useful to identify by computed tomography (CT) those COM stones that are susceptible to SW's. For this study, 47 COM stones (4-10 mm in diameter) were scanned with micro CT to verify composition and also for assessment of heterogeneity (presence of pronounced lobulation, voids, or apatite inclusions) by blinded observers.
View Article and Find Full Text PDFGreat variability exists in the response of urinary stones to SWL, and this is true even for stones composed of the same mineral. Efforts have been made to predict stone fragility to shock waves using computed tomography (CT) patient images, but most work to date has focused on the use of stone CT number (i.e.
View Article and Find Full Text PDFBackground And Purpose: Urinary stones are heterogeneous in their fragility to lithotripter shockwaves. As a first step in gaining a better understanding of the role of matrix in stone fragility, we measured extractible protein in calcium oxalate monohydrate (COM) stones that were extensively characterized by micro-computed tomography (micro CT).
Materials And Methods: Stones were scanned using micro CT (Scanco mCT20, 34 microm).
Helical CT has become the preferred method to diagnose urinary calculi in patients presenting with abdominal or flank pain. Recent in vitro studies have shown that CT also can display the internal structure in stones with remarkable detail. Because some stones respond better to SWL than others, knowing stone structure at diagnosis could be helpful in choosing among treatment options.
View Article and Find Full Text PDFBackground: Micro computed tomography (micro CT) has been shown to provide exceptionally high quality imaging of the fine structural detail within urinary calculi. We tested the idea that micro CT might also be used to identify the mineral composition of urinary stones non-destructively.
Methods: Micro CT x-ray attenuation values were measured for mineral that was positively identified by infrared microspectroscopy (FT-IR).
Objectives: To assess the ability of helical computed tomography (CT) to differentiate regions of known mineral composition in typical, heterogeneous urinary stones. Interest is substantial in the urologic community in using radiologic imaging to determine accurately the composition of urinary calculi. Recent advances in CT make this a viable prospect, but the heterogeneity of most stones is a complicating factor.
View Article and Find Full Text PDF