Publications by authors named "Chad A Highfill"

Article Synopsis
  • Normal tissues adjacent to breast tumors (NATs) may contain early signs of breast cancer development due to a phenomenon called field cancerization.
  • A study using advanced genomic techniques on samples from 43 breast cancer patients in Hong Kong revealed that NATs often had single-nucleotide variants (SNVs) in driver genes also found in tumor samples, but rarely had large-scale genomic changes.
  • The researchers identified different evolutionary patterns among NAT and tumor pairs, indicating distinct genomic characteristics and the influence of the tumor microenvironment on cancer development.
View Article and Find Full Text PDF

Objective: Segregating genetic variants contribute to the response to toxic, xenobiotic compounds, and identifying these causative sites can help describe the mechanisms underlying metabolism of toxic compounds. In previous work we implicated the detoxification gene Ugt86Dd in the genetic control of larval nicotine resistance in Drosophila melanogaster. Furthermore, we suggested that a naturally-occurring 22-bp deletion that leads to a stop codon in exon 2 of the gene markedly reduces resistance.

View Article and Find Full Text PDF

Illicit use of psychostimulants, such as cocaine and methamphetamine, constitutes a significant public health problem. Whereas neural mechanisms that mediate the effects of these drugs are well-characterized, genetic factors that account for individual variation in susceptibility to substance abuse and addiction remain largely unknown. Drosophila melanogaster can serve as a translational model for studies on substance abuse, since flies have a dopamine transporter that can bind cocaine and methamphetamine, and exposure to these compounds elicits effects similar to those observed in people, suggesting conserved evolutionary mechanisms underlying drug responses.

View Article and Find Full Text PDF

Identifying the sequence polymorphisms underlying complex trait variation is a key goal of genetics research, since knowing the precise causative molecular events allows insight into the pathways governing trait variation. Genetic analysis of complex traits in model systems regularly starts by constructing QTL maps, but generally fails to identify causative sequence polymorphisms. Previously we mapped a series of QTL contributing to resistance to nicotine in a multiparental mapping resource and here use a battery of functional tests to resolve QTL to the molecular level.

View Article and Find Full Text PDF

Background: Considerable natural variation for lifespan exists within human and animal populations. Genetically dissecting this variation can elucidate the pathways and genes involved in aging, and help uncover the genetic mechanisms underlying risk for age-related diseases. Studying aging in model systems is attractive due to their relatively short lifespan, and the ability to carry out programmed crosses under environmentally-controlled conditions.

View Article and Find Full Text PDF

Chemo/radio-therapy resistance to the deadly pancreatic cancer is mainly due to the failure to kill pancreatic cancer stem cells (CSCs). Signal transducer and activator of transcription 3 (STAT3) is activated in pancreatic CSCs and, therefore, may be a valid target for overcoming therapeutic resistance. Here we investigated the potential of STAT3 inhibition in sensitizing pancreatic cancer to chemo/radio-therapy.

View Article and Find Full Text PDF

Natural populations exhibit a great deal of interindividual genetic variation in the response to toxins, exemplified by the variable clinical efficacy of pharmaceutical drugs in humans, and the evolution of pesticide resistant insects. Such variation can result from several phenomena, including variable metabolic detoxification of the xenobiotic, and differential sensitivity of the molecular target of the toxin. Our goal is to genetically dissect variation in the response to xenobiotics, and characterize naturally-segregating polymorphisms that modulate toxicity.

View Article and Find Full Text PDF