Publications by authors named "Chaaya Iyengar Raje"

Iron is a critical nutrient for all organisms ranging from bacteria to humans. Ensuring control of this strategic vital resource significantly influences the dynamics of the struggle between host and invading pathogen. Mycobacterium tuberculosis (Mtb), the causative agent of the pulmonary disease tuberculosis (TB), has been plaguing humans for millennia and has evolved to successfully persist and multiply within host cells evading the mammalian immune defences.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a major risk factor for tuberculosis (TB), though the underlying mechanisms linking DM and TB remain ambiguous. Macrophages are a key player in the innate immune response and their phagocytic ability is enhanced in response to microbial infections. Upon infection or inflammation, they also repel invading pathogens by generating; reactive oxygen species (ROS), reactive nitrogen species (RNS), pro-inflammatory cytokines (IL-1β and IL-6), and anti-inflammatory cytokines (IL-10).

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 caused by coronavirus-2 (SARS-CoV-2) has emerged as an aggressive viral pandemic. Health care providers confront a challenging task for rapid development of effective strategies to combat this and its long-term after effects. Virus entry into host cells involves interaction between receptor-binding domain (RBD) of spike (S) protein S1 subunit with angiotensin converting enzyme present on host cells.

View Article and Find Full Text PDF

Targeting translational factor proteins (TFPs) presents significant promise for the development of innovative antitubercular drugs. Previous insights from antibiotic binding mechanisms and recently solved 3D crystal structures of Mycobacterium tuberculosis (Mtb) elongation factor thermo unstable-GDP (EF-Tu-GDP), elongation factor thermo stable-EF-Tu (EF-Ts-EF-Tu), and elongation factor G-GDP (EF-G-GDP) have opened up new avenues for the design and development of potent antituberculosis (anti-TB) therapies.

View Article and Find Full Text PDF

Coronavirus disease-19 (COVID-19) can induce severe inflammation of the lungs and respiratory system. Severe COVID-19 is frequently associated with hyper inflammation and hyper-ferritinemia. High iron levels are known to trigger pro-inflammatory effects.

View Article and Find Full Text PDF

Mycobacterium tuberculosis enolase is an essential glycolytic enzyme that catalyzes the conversion of 2, phosphoglycerate (PGA) to phosphoenol pyruvate (PEP). It is also a crucial link between glycolysis and the tricarboxylic acid (TCA) pathway. The depletion of PEP has recently been associated with the emergence of non-replicating drug resistant bacteria.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (M.tb), the major causative agent of tuberculosis, has evolved mechanisms to evade host defenses and persist within host cells. Host-directed therapies against infected cells are emerging as an effective option.

View Article and Find Full Text PDF

Photo-oxidase nanozymes are emerging enzyme-mimicking materials that produce reactive oxygen species (ROS) upon light illumination and subsequently catalyze the oxidation of the substrate. Carbon dots are promising photo-oxidase nanozymes due to their biocompatibility and straightforward synthesis. Carbon dot-based photo-oxidase nanozymes become active for ROS generation under UV or blue light illumination.

View Article and Find Full Text PDF

Infections due to Acinetobacter baumannii (A. baumannii) are rapidly increasing worldwide and consequently therapeutic options for treatment are limited. The emergence of multi drug resistant (MDR) strains has rendered available antibiotics ineffective, necessitating the urgent discovery of new drugs and drug targets.

View Article and Find Full Text PDF
Article Synopsis
  • Mycobacterium tuberculosis (M.tb) survives in host macrophages by accessing iron, despite the host’s attempts to limit its availability.
  • The study reveals that M.tb uses mammalian secreted Glyceraldehyde 3-phosphate dehydrogenase (sGAPDH) to obtain iron from host carriers, lactoferrin and transferrin.
  • This iron acquisition mechanism highlights a new way M.tb can thrive and suggests potential targets for therapeutic interventions.
View Article and Find Full Text PDF

Protein aggregate accumulation is a pathological hallmark of several neurodegenerative disorders. Autophagy is critical for clearance of aggregate-prone proteins. In this study, we identify a novel role of the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in clearance of intracellular protein aggregates.

View Article and Find Full Text PDF

Onset of protein aggregation reflects failure of the cellular folding machinery to keep aggregation-prone protein from misfolding and accumulating into a non-degradable state. FRET based analysis and biochemical data reveal that cytosolic prion (cyPrP) and httQ-103 interact with the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) leading to few detectable aggregates in GAPDH-over expressing cells.The preventive effect of GAPDH suggests that this abundant and long-lived cytoplasmic protein has an active role in the shielding and maintenance, in soluble form of proteins as heterogeneous as huntingtin and cyPrP.

View Article and Find Full Text PDF

The spread of infection is directly determined by the ability of a pathogen to invade and infect host tissues. The process involves adherence due to host-pathogen interactions and traversal into deeper tissues. Mycobacterium tuberculosis (Mtb) primarily infects the lung but is unique in its ability to infect almost any other organ of the human host including immune privileged sites such as the central nervous system (CNS).

View Article and Find Full Text PDF

Background/aims: Hypoxia triggers a rapid increase in iron demand to meet the requirements of enhanced erythropoiesis. The mobilization of iron stores from macrophage to plasma as holo-transferrin (Tf) from where it is accessible to erythroid precursor cells impacts iron homeostasis. Despite the immediate need for enhanced iron uptake by bone marrow cells, numerous studies have shown that transferrin receptor levels do not rise until more than 24 hours after the onset of hypoxia, suggesting the existence of heretofore unknown rapid response cellular machinery for iron acquisition in the early stages of cellular hypoxia.

View Article and Find Full Text PDF

Background: The emergence of drug-resistant bacteria is a major hurdle for effective treatment of infections caused by Mycobacterium tuberculosis and ESKAPE pathogens. In comparison with conventional drug discovery, drug repurposing offers an effective yet rapid approach to identifying novel antibiotics.

Methods: Ethyl bromopyruvate was evaluated for its ability to inhibit M.

View Article and Find Full Text PDF

During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes.

View Article and Find Full Text PDF

Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation.

View Article and Find Full Text PDF

Background: Obtaining sufficient quantities of recombinant M.tb proteins using traditional approaches is often unsuccessful. Several enzymes of the glycolytic cycle are known to be multifunctional, however relatively few enzymes from M.

View Article and Find Full Text PDF

Iron (Fe), a vital micronutrient for all organisms, must be managed judiciously because both deficiency or excess can trigger severe pathology. Although cellular Fe import is well understood, its export is thought to be limited to transmembrane extrusion through ferroportin (also known as Slc40a1), the only known mammalian Fe exporter. Utilizing primary cells and cell lines (including those with no discernible expression of ferroportin on their surface), we demonstrate that upon Fe loading, the multifunctional enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is recruited to the cell surface, 'treadmills' apotransferrin in and out of the cell.

View Article and Find Full Text PDF

Iron is essential for the survival of both prokaryotic and eukaryotic organisms. It functions as a cofactor for several vital enzymes and iron deprivation is fatal to cells. However, at the same time, excess amounts of iron are also toxic to cells due to the formation of free radicals via the Fenton reaction.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (M.tb), which requires iron for survival, acquires this element by synthesizing iron-binding molecules known as siderophores and by recruiting a host iron-transport protein, transferrin, to the phagosome. The siderophores extract iron from transferrin and transport it into the bacterium.

View Article and Find Full Text PDF

Background: The long held view is that mammalian cells obtain transferrin (Tf) bound iron utilizing specialized membrane anchored receptors. Here we report that, during increased iron demand, cells secrete the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which enhances cellular uptake of Tf and iron.

Methods: These observations could be mimicked by utilizing purified GAPDH injected into mice as well as when supplemented in culture medium of model cell lines and primary cell types that play a key role in iron metabolism.

View Article and Find Full Text PDF

Several proteins with limited cell type distribution have been shown to bind lactoferrin. However, except in the case of hepatic and intestinal cells, these have not been definitively identified and characterized. Here we report that the multifunctional glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a novel receptor for lactoferrin (Lf) in macrophages.

View Article and Find Full Text PDF