Publications by authors named "Cha Xiang Guan"

Background: Cadmium is a ubiquitous toxic metal and environmental pollutant. More and more studies have shown that cadmium exposure can damage lung function. Alveolar epithelial cells (AECs) are structural cells that maintain the stability of lung function.

View Article and Find Full Text PDF

In recent years, cell therapy has emerged as an innovative treatment method for the management of clinical tumors following immunotherapy. Among them, Natural killer (NK) cell therapy has achieved a significant breakthrough in the treatment of hematological tumors. However, the therapeutic effectiveness of NK cells in the treatment of solid tumors remains challenging.

View Article and Find Full Text PDF
Article Synopsis
  • Myofibroblast apoptosis resistance contributes to the progression of pulmonary fibrosis (PF), particularly in idiopathic pulmonary fibrosis (IPF) cases.
  • Researchers discovered that mesenchyme homeobox 1 (MEOX1) is overexpressed in lung tissues of IPF patients and in mouse models with PF.
  • Silencing MEOX1 reduces PF severity and increases myofibroblast apoptosis by targeting the G-protein signaling pathway regulator RGS4, suggesting that MEOX1 could be a potential therapeutic target for PF treatment.
View Article and Find Full Text PDF

Extensive loss of alveolar epithelial cells (AECs) undergoing necroptosis is a crucial mechanism of acute lung injury (ALI), but its triggering mechanism needs to be thoroughly investigated. Neutrophil extracellular traps (NETs) play a significant role in ALI. However, the effect of NETs on AECs' death has not been clarified.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia, occurring primarily in older adults with poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. However, the molecular mechanisms regulating AEC senescence in PF are incompletely understood.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs) are overexpressed in tumor cells, and their aberrant activation can promote the progression of non-small-cell lung cancer (NSCLC). We utilized structure-based virtual screening and experimental validation to screen for potential CDKs antagonists among TargetMol natural products. Molecular docking and molecular dynamics simulation results indicate that Dolastatin 10 exhibits strong interactions with multiple subtypes of CDKs (CDK1, CDK2, CDK3, CDK4, and CDK6), forming stable CDKs-Dolastatin 10 complex compounds.

View Article and Find Full Text PDF

Background: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs.

View Article and Find Full Text PDF

The activation of NLRP3 inflammasome in microglia is critical for neuroinflammation during postoperative cognitive dysfunction (POCD) induced by sevoflurane. However, the molecular mechanism by which sevoflurane activates the NLRP3 inflammasome in microglia remains unclear. The cGAS-STING pathway is an evolutionarily conserved inflammatory defense mechanism.

View Article and Find Full Text PDF

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis.

View Article and Find Full Text PDF

Alveolar epithelial cell (AEC) senescence is considered to be a universal pathological feature of many chronic pulmonary diseases. Our previous study found that epoxyeicosatrienoic acids (EETs), produced from arachidonic acid (ARA) through the cytochrome P450 cyclooxygenase (CYP) pathway, have significant negative regulatory effects on cellular senescence in AECs. However, the exact mechanisms by which EETs alleviate the senescence of AECs still need to be further explored.

View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s.

View Article and Find Full Text PDF

Alveolar epithelial cell (AEC) senescence is implicated in the pathogenesis of pulmonary fibrosis (PF). However, the exact mechanism underlying AEC senescence during PF remains poorly understood. Here, we reported an unrecognized mechanism for AEC senescence during PF.

View Article and Find Full Text PDF

Alveolar epithelial cell (AEC) senescence is a key driver of a variety of chronic lung diseases. It remains a challenge how to alleviate AEC senescence and mitigate disease progression. Our study identified a critical role of epoxyeicosatrienoic acids (EETs), downstream metabolites of arachidonic acid (ARA) by cytochrome p450 (CYP), in alleviating AEC senescence.

View Article and Find Full Text PDF

Background: Necroptosis of macrophages is a necessary element in reinforcing intrapulmonary inflammation during acute lung injury (ALI). However, the molecular mechanism that sparks macrophage necroptosis is still unclear. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor expressed broadly on monocytes/macrophages.

View Article and Find Full Text PDF

Global control of the tuberculosis epidemic is threatened by increasing prevalence of drug resistant M. tuberculosis isolates. Many genome-wide studies focus on SNP-associated drug resistance mechanisms, but drug resistance in 5-30% of M.

View Article and Find Full Text PDF

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice.

View Article and Find Full Text PDF
Article Synopsis
  • - Necroptosis, a form of programmed cell death, primarily affects alveolar epithelial cells during acute lung injury (ALI), and the study identifies new underlying mechanisms behind this process.
  • - Accumulation of mitochondrial citrate in AECs, caused by downregulation of specific proteins (Idh3α and Slc25a1), leads to necroptosis; inhibiting these proteins results in higher citrate levels and worsened lung injury in mice.
  • - The study reveals that citrate accumulation triggers mitochondrial fission and excessive mitophagy, interacting with a protein called FUNDC1, which ultimately promotes necroptosis; targeting citrate could be a novel strategy for protecting against ALI.
View Article and Find Full Text PDF

Our previous study showed that triggering receptors expressed on myeloid cell-1 (TREM-1) was upregulated in bleomycin (BLM)-induced pulmonary fibrosis (PF) mouse model. However, the role of TREM-1 in the development of PF and its underlying mechanism remain unclear. Herein, we report that the prophylactical blockade of TREM-1 using a decoy peptide dodecapeptide (LR12) exerted protective effects against BLM-induced PF in mice, with a higher survival rate, attenuated tissue injury, and less extracellular matrix deposition.

View Article and Find Full Text PDF

Background: Epoxyeicosatrienoic acids (EETs), the metabolite of arachidonic acid by cytochrome P450 (CYP), reportedly serve as a vital endogenous protective factor in several chronic diseases. EETs are metabolized by soluble epoxide hydrolase (sEH). We have observed that prophylactic blocking sEH alleviates bleomycin- (BLM-) induced pulmonary fibrosis (PF) in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Sepsis is a serious condition often arising from combat injuries, marked by dangerous organ dysfunction due to an inappropriate immune response to infection, and contributes significantly to mortality and high healthcare costs in intensive care settings.
  • Current treatments like antibiotics and fluid therapy have not greatly improved patient outcomes, while sepsis is increasingly linked to immunosuppression, which disrupts normal immune function and can lead to death.
  • Recent research focuses on understanding the mechanisms behind sepsis-induced immunosuppression and exploring immune checkpoint inhibitors as potential therapies to restore immune effectiveness and improve patient survival in septic shock.
View Article and Find Full Text PDF

Background: Uncontrolled inflammation is an important factor in the occurrence and development of acute lung injury (ALI). Fibroblast growth factor-inducible 14 (Fn14), a plasma membrane-anchored receptor, takes part in the pathological process of a variety of acute and chronic inflammatory diseases. However, the role of Fn14 in ALI has not yet been elucidated.

View Article and Find Full Text PDF

Fibrosis is a common pathological outcome of chronic injuries, characterized by excessive deposition of extracellular matrix components in organs, as seen in most chronic inflammatory diseases. At present, there is an increasing tendency of the morbidity and mortality of diseases caused by fibrosis, but the treatment measures for fibrosis are still limited. Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily, which also has the name endocrine FGFs because of their endocrine manner.

View Article and Find Full Text PDF

Megakaryocytes (MKs) are typical cellular components in the circulating blood flowing from the heart into the lungs. Physiologically, MKs function as an important regulator of platelet production and immunoregulation. However, dysfunction in MKs is considered a trigger in various diseases.

View Article and Find Full Text PDF

Necroptosis, a recently described form of programmed cell death, is the main way of alveolar epithelial cells (AECs) death in acute lung injury (ALI). While the mechanism of how to trigger necroptosis in AECs during ALI has been rarely evaluated. Long optic atrophy protein 1 (L-OPA1) is a crucial mitochondrial inner membrane fusion protein, and its deficiency impairs mitochondrial function.

View Article and Find Full Text PDF

Rationale: Alveolar epithelial cell death, inflammation, and oxidative stress are typical features of acute lung injury (ALI). Aloperine (Alo), an alkaloid isolated from Sophora alopecuroides, has been reported to display various biological effects, such as anti-inflammatory, immunoregulatory, and anti-oxidant properties. In this study, we investigated the effects and mechanisms of Alo in treating a lipopolysaccharide (LPS)-induced ALI in a murine model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionplt2urjqphem9nh8do5utfgb2uldghv6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once