Dispersion cancellation with an energy-time entangled photon pair in Hong-Ou-Mandel (HOM) interference is one phenomenon that reveals the nonclassical nature of the entangled photon pair. This phenomenon has been observed in materials with very weak dispersions. If the higher-order dispersion coefficient is non-negligible, then the experiment must be modified to realize dispersion cancellation.
View Article and Find Full Text PDFRecently, synthetic optical materials represented via non-Hermitian Hamiltonians have attracted significant attention because of their nonorthogonal eigensystems, enabling unidirectionality, nonreciprocity and unconventional beam dynamics. Such systems demand carefully configured complex optical potentials to create skewed vector spaces with a desired metric distortion. In this paper, we report optically generated non-Hermitian photonic lattices with versatile control of real and imaginary sub-lattices.
View Article and Find Full Text PDFSingle-mode distributed feedback laser structures and parity-time symmetry broken grating structures based on dielectric-loaded long-range surface plasmon polariton waveguides are proposed. The structures comprise a thin Ag stripe on an active polymer bottom cladding with an active polymer ridge. The active polymer assumed is PMMA doped with IR140 dye providing optical gain at near infrared wavelengths.
View Article and Find Full Text PDFAn optical tweezers system using laser beams with a Gaussian intensity profile and doughnut intensity profiles made by hollow core optical fiber and axicon lenses, respectively, was constructed. The axial trapping efficiencies for the three intensity profiles were measured and compared with each other. The particle size dependence of axial trapping efficiencies in the range of the particle diameter from 1 to 20 μm were analyzed by using the modified ray optics model [Appl.
View Article and Find Full Text PDFThe coherent control of optical images has garnered attention because all information embedded in optical images is expected to be controlled in a parallel way. One of the most important control processes is switch for information delivery. We experimentally demonstrated phase-controlled optical image switching in a double-Λ system where the transmission of the image through a medium was switched.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2011
We studied the effects of seed layers on the structural and optical properties of ZnO nanorods. ZnO and Ag-doped ZnO (ZnO:Ag) seed layers were deposited on glass substrates by magnetron co-sputtering. ZnO nanorods were grown on these seed layers by the chemical bath deposition in an aqueous solution of Zn(NO3)2 and hexamethyltetramine.
View Article and Find Full Text PDFWe showed experimentally interference could be occurred between incoherent lights in a double-Λ lambda transition implemented with rubidium atomic vapor. Switching of probe transmission was controlled by the phases of two` independent probe lasers with low light intensity. More than 70% of the probe transmission could be switched by ultra-weak incoherent field.
View Article and Find Full Text PDFWe show that backpropagating modes of surface polaritons can exist at the interface between two semi-infinite cross-negative media, one with negative permittivity (epsilon less than 0) and the other with negative permeability (micro less than 0). These single-interface modes that propagate along the surface of a cross-negative interface are physically of interest, since the single-negative requirements imposed on the material parameters can easily be achieved at terahertz and potentially optical frequencies by scaling the dimension of artificially structured planar materials. Conditions for material parameters that support a backpropagating mode of the surface polaritons are obtained by considering dispersion relation and energy flow density transported by surface polaritons and confirmed numerically by simulation of surface polariton propagation resonantly excited at a cross-negative interface by attenuated total reflection.
View Article and Find Full Text PDFThe computer-generated holography technique is applied to the structuring of two-dimensional (2D) photonic crystals with inherently embedded arbitrary defects. The technique uses phase-only Fourier gratings as a generator of spot arrays in the focal plane, such that a single exposure produces a 2D array of focused spots with desired defects or modifications in the lattice structure. We demonstrate several types of large-area 2D lattice structures with square, hexagonal, or hybrid lattices embedded with point and (or) line defects.
View Article and Find Full Text PDFEfficient outcoupling of surface-plasma waves to radiation modes by use of dielectric diffraction gratings on a flat metallic surface is discussed. The dielectric gratings, which have a surface-relief structure with only several tens of nanometers in peak-to-trough height on a flat metal surface, can efficiently extract radiation modes propagating in free space from the surface-plasmon modes. An outcoupling efficiency of 50% is estimated with the rigorous coupled-wave diffraction theory, and it is confirmed by the experiment.
View Article and Find Full Text PDF