Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases.
View Article and Find Full Text PDFSuprachiasmatic nucleus (SCN) in synchronization with the peripheral clocks regulates the temporal oscillations leading to overt rhythms. Aging leads to attenuation of such circadian regulation, accompanied by increased inflammatory mediators prevalently the cytokines. Suppressors of cytokine signaling (SOCS) family of proteins such as SOCS 1, 3 and cytokine-inducible SH2-containing protein (CIS) negatively regulate the cytokine signaling pathway.
View Article and Find Full Text PDFIn mammals suprachiasmatic nucleus (SCN), acts as a light entrainable master clock and by generation of temporal oscillations regulates the peripheral organs acting as autonomous clocks resulting in overt behavioral and physiological rhythms. SCN also controls synthesis and release of melatonin (hormonal message for darkness) from pineal. Nitric Oxide (NO) acts as an important neurotransmitter in generating the phase shifts of circadian rhythms and participates in sleep-wake processes, maintenance of vascular tone as well as signalling and regulating inflammatory processes.
View Article and Find Full Text PDF