The excited states of unstable ^{20}O were investigated via γ-ray spectroscopy following the ^{19}O(d,p)^{20}O reaction at 8 AMeV. By exploiting the Doppler shift attenuation method, the lifetimes of the 2_{2}^{+} and 3_{1}^{+} states were firmly established. From the γ-ray branching and E2/M1 mixing ratios for transitions deexciting the 2_{2}^{+} and 3_{1}^{+} states, the B(E2) and B(M1) were determined.
View Article and Find Full Text PDFThe reduced transition probabilities for the 4_{1}^{+}→2_{1}^{+} and 2_{1}^{+}→0_{1}^{+} transitions in ^{92}Mo and ^{94}Ru and for the 4_{1}^{+}→2_{1}^{+} and 6_{1}^{+}→4_{1}^{+} transitions in ^{90}Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N=50 g_{9/2} orbital to be understood.
View Article and Find Full Text PDFThe low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N=Z) nuclide _{44}^{88}Ru_{44} has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in ^{88}Ru were populated via the ^{54}Fe(^{36}Ar,2nγ)^{88}Ru^{*} fusion-evaporation reaction at the Grand Accélérateur National d'Ions Lourds (GANIL) accelerator complex. The observed γ-ray cascade is assigned to ^{88}Ru using clean prompt γ-γ-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states.
View Article and Find Full Text PDFPhys Rev Lett
November 2018
The lifetimes of the first excited 2^{+}, 4^{+}, and 6^{+} states in ^{98}Zr were measured with the recoil-distance Doppler shift method in an experiment performed at GANIL. Excited states in ^{98}Zr were populated using the fission reaction between a 6.2 MeV/u ^{238}U beam and a ^{9}Be target.
View Article and Find Full Text PDFLifetime measurements of excited states of the light N=52 isotones ^{88}Kr, ^{86}Se, and ^{84}Ge have been performed, using the recoil distance Doppler shift method and VAMOS and AGATA spectrometers for particle identification and gamma spectroscopy, respectively. The reduced electric quadrupole transition probabilities B(E2;2^{+}→0^{+}) and B(E2;4^{+}→2^{+}) were obtained for the first time for the hard-to-reach ^{84}Ge. While the B(E2;2^{+}→0^{+}) values of ^{88}Kr, ^{86}Se saturate the maximum quadrupole collectivity offered by the natural valence (3s, 2d, 1g_{7/2}, 1h_{11/2}) space of an inert ^{78}Ni core, the value obtained for ^{84}Ge largely exceeds it, suggesting that shape coexistence phenomena, previously reported at N≲49, extend beyond N=50.
View Article and Find Full Text PDFPrompt γ-ray spectroscopy of the neutron-rich ^{96}Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to J^{π}=4^{+}, is observed for the first time, and a previously reported level energy of the first 2^{+} excited state is confirmed. The measured energy ratio R_{4/2}=E(4^{+})/E(2^{+})=2.
View Article and Find Full Text PDFShape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∼40 mass region is discussed.
View Article and Find Full Text PDFThe isospin mixing was deduced in the compound nucleus ^{80}Zr at an excitation energy of E^{*}=54 MeV from the γ decay of the giant dipole resonance. The reaction ^{40}Ca+^{40}Ca at E_{beam}=136 MeV was used to form the compound nucleus in the isospin I=0 channel, while the reaction ^{37}Cl+^{44}Ca at E_{beam}=95 MeV was used as the reference reaction. The γ rays were detected with the AGATA demonstrator array coupled with LaBr_{3}:Ce detectors.
View Article and Find Full Text PDFModern microbialites in Pavilion Lake, BC, provide an analog for ancient non-stromatolitic microbialites that formed from in situ mineralization. Because Pavilion microbialites are mineralizing under the influence of microbial communities, they provide insights into how biological processes influence microbialite microfabrics and mesostructures. Hemispherical nodules and micrite-microbial crusts are two mesostructures within Pavilion microbialites that are directly associated with photosynthetic communities.
View Article and Find Full Text PDFThe properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data.
View Article and Find Full Text PDFThe rotational band structure of the Z=104 nucleus (256)Rf has been observed up to a tentative spin of 20ℏ using state-of-the-art γ-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals.
View Article and Find Full Text PDFOpen reduction and internal fixation (ORIF) with locking plates or primary arthroplasty remains a controversial issue in the management of complex proximal humerus fractures. Aim of this study was to evaluate the surgeon- and patient-based outcome of patients older than 65 years who underwent ORIF using locking plate fixation of a 3- or 4-part fracture of the proximal humerus. Twenty-seven patients older than 65 years were treated with locking plate fixation (PHILOS, Fa.
View Article and Find Full Text PDFThe transfer of neutrons onto 24Ne has been measured using a reaccelerated radioactive beam of 24Ne to study the (d,p) reaction in inverse kinematics. The unusual raising of the first 3/2+ level in 25Ne and its significance in terms of the migration of the neutron magic number from N=20 to N=16 is put on a firm footing by confirmation of this state's identity. The raised 3/2+ level is observed simultaneously with the intruder negative parity 7/2- and 3/2- levels, providing evidence for the reduction in the N=20 gap.
View Article and Find Full Text PDFThe rotational band structure of 255Lr has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, 255Lr is the heaviest nucleus to be studied in this manner. One rotational band has been unambiguously observed and strong evidence for a second rotational structure was found.
View Article and Find Full Text PDFResults from the gamma-ray spectroscopy of {47,48}Ar exemplifying new limits of sensitivity for characterizing neutron-rich nuclei at energies around the Coulomb barrier are presented. The present results, along with interacting shell model calculations, highlight the role of cross-shell excitations and indicate the presence of a nonaxial deformation in 48Ar.
View Article and Find Full Text PDFLifetimes of states in the ground-state bands of (70)Se and (72)Se were measured using the recoil-distance Doppler shift method. The results deviate significantly from earlier measurements, requiring a revision of the conclusions drawn from a recent Coulomb excitation experiment concerning the shape of (70)Se. The new results lead to a coherent picture of shape coexistence in the neutron-deficient selenium and krypton isotopes.
View Article and Find Full Text PDFA rotational band has been unambiguously observed in an odd-proton transfermium nucleus for the first time. An in-beam gamma-ray spectroscopic study of 101/251Md has been performed using the gamma-ray array JUROGAM combined with the gas-filled separator RITU and the focal plane device GREAT. The experimental results, compared to Hartree-Fock-Bogolyubov calculations, lead to the interpretation that the rotational band is built on the [521]1/2(-) Nilsson state.
View Article and Find Full Text PDFA long-standing prediction of nuclear models is the emergence of a region of long-lived, or even stable, superheavy elements beyond the actinides. These nuclei owe their enhanced stability to closed shells in the structure of both protons and neutrons. However, theoretical approaches to date do not yield consistent predictions of the precise limits of the 'island of stability'; experimental studies are therefore crucial.
View Article and Find Full Text PDFThe reduced transition probabilities B(E2;0(+) --> 2(+)(1)) of the neutron-rich (74)Zn and (70)Ni nuclei have been measured by Coulomb excitation in a (208)Pb target at intermediate energy. These nuclei have been produced at Grand Accélérateur National d'Ions Lourds via interactions of a 60A MeV (76)Ge beam with a Be target. The B(E2) value for (70)Ni(42) is unexpectedly large, which indicates that neutrons added above N=40 strongly polarize the Z=28 proton core.
View Article and Find Full Text PDFA new isomeric 0(+) state was identified as the first excited state in the self-conjugate (N=Z) nucleus 72Kr. By combining for the first time conversion-electron and gamma-ray spectroscopy with the production of metastable states in high-energy fragmentation, the electric-monopole decay of the new isomer to the ground state was established. The new 0(+) state is understood as the band head of the known prolate rotational structure, which strongly supports the interpretation that 72Kr is one of the rare nuclei having an oblate-deformed ground state.
View Article and Find Full Text PDFThe spectrum of prompt conversion electrons emitted by excited 254No nuclei has been measured, revealing discrete lines arising from transitions within the ground state band. A striking feature is a broad distribution that peaks near 100 keV and comprises high multiplicity electron cascades, probably originating from M1 transitions within rotational bands built on high K states.
View Article and Find Full Text PDFThe neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy.
View Article and Find Full Text PDF