Phys Rev E Stat Nonlin Soft Matter Phys
November 2003
The spatial structure of the Kalpha emission from Ti targets irradiated with a high intensity femtosecond laser has been studied using a two-dimensional monochromatic imaging technique. For laser intensities I<5 x 10(17) W/cm(2), the observed spatial structure of the Kalpha emission can be explained by the scattering of the hot electrons inside the solid with the help of a hybrid particle-in-cell/Monte Carlo model. By contrast, at the maximum laser intensity I=7 x 10(18) W/cm(2) the half-width of the Kalpha emission was 70 microm compared to a laser-focus half-width of 3 microm.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2002
The conversion efficiency of a 90 fs high-power laser pulse focused onto a solid target into x-ray Kalpha line emission was measured. By using three different elements as target material (Si, Ti, and Co), interesting candidates for fast x-ray diffraction applications were selected. The Kalpha output was measured with toroidally bent crystal monochromators combined with a GaAsP Schottky diode.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2002
An analytical model of femtosecond K(alpha) x-ray generation from laser-irradiated foils is presented. Expressions are found for the photon emission yield in both forward and backward directions in integral form as a function of hot-electron temperature and target thickness. It is found that for any given target material, there is a foil thickness and a hot-electron temperature at which the K(alpha) emission is maximized.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2002
Ultrashort bursts of silicon K alpha x-ray radiation from femtosecond-laser-produced plasmas have been generated. A cross-correlation measurement employing a laser-triggered ultrafast structural change of a CdTe crystal layer (320 nm) shows a K alpha pulse duration between 200 fs and 640 fs. This result is corroborated by particle in cell simulations combined with a Monte-Carlo electron stopping code and calculations on the structural changes of the crystal lattice.
View Article and Find Full Text PDF