Publications by authors named "Ch Lisdat"

We present a transportable optical clock (TOC) with ^{87}Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4×10^{-17}, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.

View Article and Find Full Text PDF

We have demonstrated a direct frequency comparison between two ⁸⁷Sr lattice clocks operated in intercontinentally separated laboratories in real time. Two-way satellite time and frequency transfer technique, based on the carrier-phase, was employed for a direct comparison, with a baseline of 9000 km between Japan and Germany. A frequency comparison was achieved for 83,640 s, resulting in a fractional difference of (1.

View Article and Find Full Text PDF

Here we describe a compact and efficient strontium oven well suited for laser-cooling experiments. Novel design solutions allowed us to produce a collimated strontium atomic beam with a flux of 1.0 × 10(13) s(-1) cm(-2) at the oven temperature of 450 °C, reached with an electrical power consumption of 36 W.

View Article and Find Full Text PDF

We have quantified collisional losses, decoherence and the collision shift in a one-dimensional optical lattice clock on the highly forbidden transition (1)S(0)-(3)P(0) at 698 nm with bosonic (88)Sr. We were able to distinguish two loss channels: inelastic collisions between atoms in the upper and lower clock state and atoms in the upper clock state only. Based on the measured coefficients, we determine the operation parameters at which a 1D-lattice clock with (88)Sr shows no degradation due to collisions on the fractional uncertainty level of 10(-16).

View Article and Find Full Text PDF

We report an experimental study of the K(2) A (1)Sigma(u) (+) state. Long-range levels up to the dissociation limit were observed in a two laser spectroscopic experiment using a highly collimated molecular beam. We derive an analytical potential energy curve for the complete A state including long-range dispersion terms.

View Article and Find Full Text PDF