Publications by authors named "Ch Koerner"

The human voltage-gated sodium channel Na1.5 (hNa1.5/SCN5A) plays a critical role in the initiation and propagation of action potentials in cardiac myocytes, and its modulation by various drugs has significant implications for cardiac safety.

View Article and Find Full Text PDF
Article Synopsis
  • The calcium release activated calcium (CRAC) channel is vital in T lymphocytes for regulating immune functions, including T cell activation and cytokine production.
  • Mutations in CRAC channel components can lead to severe immune disorders like SCID and muscle diseases such as tubular aggregated myopathy (TAM).
  • Recent studies identified compound 4k as a promising selective blocker of the CRAC channel, effectively inhibiting T cell activity while sparing other channels like TRPM4 and TRPM7, potentially offering a new approach for therapeutic interventions.
View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays.

View Article and Find Full Text PDF

As thin films of semiconducting covalent organic frameworks (COFs) are demonstrating utility for ambipolar electronics, channel materials in organic electrochemical transistors (OECTs), and broadband photodetectors, control and modulation of their thin film properties is paramount. In this work, an interfacial growth technique is utilized to synthesize imine TAPB-PDA COF films at both the liquid-liquid interface as well as at the liquid-solid interface on a Si/SiO substrate. The concentration of acetic acid catalyst in the aqueous phase is shown to significantly influence the thin film morphology of the liquid-solid growth, with concentrations below 1 M resulting in no film nucleation, concentrations of 1-4 M enabling smooth film formation, and concentrations greater than 4 M resulting in films with a higher density of particulates on the surface.

View Article and Find Full Text PDF
Article Synopsis
  • * It presents data from surveys on herbivory for 503 plant species across various geographic locations, revealing that variability increases with latitude and decreases with plant size.
  • * The authors propose that understanding the factors influencing this variability is crucial for comprehending broader ecological patterns and advancements in plant-herbivore research.
View Article and Find Full Text PDF

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients.

View Article and Find Full Text PDF

The conductivity and strength of carbon nanotube (CNT) wires currently rival those of existing engineering materials; fullerene-based materials have not progressed similarly, despite their exciting transport properties such as superconductivity. This communication reveals a new mechanically robust wire of mutually aligned fullerene supramolecules self-assembled between CNT bundles, where the fullerene supramolecular internal crystal structure and outer surface are aligned and dispersed with the CNT bundles. The crystallinity, crystal dimensions, and other structural features of the fullerene supramolecular network are impacted by a number of important production processes such as fullerene concentration and postprocess annealing.

View Article and Find Full Text PDF

There is a growing need for degradable polymers for applications in sustainable plastics and medical implants. To enhance the utility of degradable polymers, both better understanding of the factors that influence their degradation and new tools to modulate degradation are needed. We report the C-H xanthylation of poly(caprolactone), a biodegradable polyester, which results in changes in materials properties even at small incorporations.

View Article and Find Full Text PDF

Polyimide hybrid nanocomposites with the polyimide confined at molecular length scales exhibit enhanced fracture resistance with excellent thermal-oxidative stability at low density. Previously, polyimide nanocomposites were fabricated by infiltration of a polyimide precursor into a nanoporous matrix followed by sequential thermally induced imidization and cross-linking of the polyimide under nanometer-scale confinement. However, byproducts formed during imidization became volatile at the cross-linking temperature, limiting the polymer fill level and degrading the nanocomposite fracture resistance.

View Article and Find Full Text PDF

With emerging supremacy, cancer immunotherapy has evolved as a promising therapeutic modality compared to conventional antitumor therapies. Cancer immunotherapy composed of biodegradable poly(lactic-co-glycolic acid) (PLGA) particles containing antigens and toll-like receptor ligands induces vigorous antitumor immune responses in vivo. Here, we demonstrate the supreme adjuvant effect of the recently developed and pharmaceutically defined double-stranded (ds)RNA adjuvant Riboxxim especially when incorporated into PLGA particles.

View Article and Find Full Text PDF

The present study aimed to establish age- and sex-specific reference intervals for serum concentrations of thyrotropin (TSH), free triiodothyronine (fT3), and free thyroxine (fT4) in healthy children and adolescents. Additionally, we investigated the association of TSH, fT3, and fT4 with putative influencing factors, such as sex, body mass index (BMI), and puberty. A total of 9404 blood serum samples from 3140 children and adolescents without thyroid affecting diseases were included in determining TSH, fT3, and fT4 levels and age- and sex-specific reference ranges.

View Article and Find Full Text PDF

Objective: Carbonyl reductase 1 (Cbr1), a recently discovered contributor to tissue glucocorticoid metabolism converting corticosterone to 20β-dihydrocorticosterone (20β-DHB), is upregulated in adipose tissue of obese humans and mice and may contribute to cardiometabolic complications of obesity. This study tested the hypothesis that Cbr1-mediated glucocorticoid metabolism influences glucocorticoid and mineralocorticoid receptor activation in adipose tissue and impacts glucose homeostasis in lean and obese states.

Methods: The actions of 20β-DHB on corticosteroid receptors in adipose tissue were investigated first using a combination of in silico, in vitro, and transcriptomic techniques and then in vivo administration in combination with receptor antagonists.

View Article and Find Full Text PDF

Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships.

View Article and Find Full Text PDF

Adipokines and apolipoproteins are key regulators and potential biomarkers in obesity and associated diseases and their quantitative assessment is crucial for functional analyses to understand disease mechanisms. Compared to routinely used ELISAs, multiple reaction monitoring (MRM)-based mass spectrometry allows multiplexing and detection of proteins for which antibodies are not available. Thus, we established an MRM method to quantify 9 adipokines and 10 apolipoproteins in human serum.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AHR) is an essential regulator of gut immunity and a promising therapeutic target for inflammatory bowel disease (IBD). Current AHR agonists are inadequate for clinical translation due to low activity, inadequate pharmacokinetics, or toxicity. We synthesized a structurally diverse library and used integrated computational and experimental studies to discover mechanisms governing ligand-receptor interaction and to design potent drug leads PY109 and PY108, which display physiochemical drug-likeness properties, desirable pharmacokinetic profiles, and low toxicity.

View Article and Find Full Text PDF

Anemia of β-thalassemia is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis.

View Article and Find Full Text PDF

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated.

View Article and Find Full Text PDF

A sensitive competitive indirect enzyme-linked immunosorbent assay (ciELISA) was developed for the detection and quantification of citrinin (CIT) in grain-based food samples. The limit of quantification (IC) of the established method was 0.10 ± 0.

View Article and Find Full Text PDF

With emerging success in fighting off cancer, chronic infections, and autoimmune diseases, immunotherapy has become a promising therapeutic approach compared to conventional therapies such as surgery, chemotherapy, radiation therapy, or immunosuppressive medication. Despite the advancement of monoclonal antibody therapy against immune checkpoints, the development of safe and efficient cancer vaccine formulations still remains a pressing medical need. Anti-tumor immunotherapy requires the induction of antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses which recognize and specifically destroy tumor cells.

View Article and Find Full Text PDF

Purpose: Oligodendroglioma has a relatively favorable prognosis, however, often undergoes malignant progression. We hypothesized that preclinical models of oligodendroglioma could facilitate identification of therapeutic targets in progressive oligodendroglioma. We established multiple oligodendroglioma xenografts to determine if the PI3K/AKT/mTOR signaling pathway drives tumor progression.

View Article and Find Full Text PDF

It is important to analyze the presence of wheat/gluten in food to avoid wheat allergy or celiac disease. The Wheat/Gluten ELISA kit was developed to measure total wheat protein or gluten content in wheat, barley, and rye cereals as raw materials, and processed foods. Validation as to whether this kit is suitable for quantifying total wheat protein/gluten was carried out.

View Article and Find Full Text PDF

Sterigmatocystin (STC) is a toxic secondary metabolite produced by more than 50 fungal species, including Aspergillus flavus, A. parasiticus, A. nidulans, and A.

View Article and Find Full Text PDF

The deposition of coatings enabling antibacterial properties in combination with cytocompatibility remains a challenge for biomaterial applications, such as in medical devices. Silver is one of the most utilized antibacterial surface components, due to its efficacy and extensive applicability. In this work, silver-containing plasma polymer nanocomposites (single layer and multilayers) were developed and tested, with a focus on cytotoxicity and bactericidal function, on the NIH3T3 mammalian cell line as well as Gram-negative ( Pseudomonas aeruginosa) and Gram-positive ( Staphylococcus aureus) bacterial strains.

View Article and Find Full Text PDF