Nanomaterials (Basel)
October 2022
The nitrogen-doped MXene carbon nanosheet-nickel (N-M@CNi) powder was successfully prepared by a combined process of electrostatic attraction and annealing strategy, and then applied as the separator coating in lithium-sulfur batteries. The morphology and structure of the N-M@CNi were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectrum, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption method. The strong LiPS adsorption ability and high conductivity are associated with the N-doped carbon nanosheet-Ni modified surface.
View Article and Find Full Text PDFThe single-molecular conductance of a redox active viologen molecular bridge between Au|graphene electrodes has been studied in an electrochemical gating configuration in an ionic liquid medium. A clear "off-on-off" conductance switching behaviour has been achieved through gating of the redox state when the electrochemical potential is swept. The Au|viologen|graphene junctions show single-molecule conductance maxima centred close to the equilibrium redox potentials for both reduction steps.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
As accurate step counting is a critical indicator for exercise evaluation in daily life, pedometers give a quantitative prediction of steps and analyze the amount of exercise to regulate the exercise plan. However, the merchandized pedometers still suffer from limited battery life and low accuracy. In this work, an integrated self-powered real-time pedometer system has been demonstrated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
Radiation hardness is important for electronics operating in harsh radiation environments such as outer space and nuclear energy industries. In this work, radiation-hardened solution-processed ZrLaO thin films are demonstrated. The radiation effects on solution-processed ZrLaO thin films and InO/ZrLaO thin-film transistors (TFTs) were systemically investigated.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2021
The use of graphene as a new type of electrode at molecular junctions has led to a renewal of molecular electronics. Indeed, the symmetry breaking induced by the graphene electrode yields different electronic behaviors at the molecular junction and in particular enhanced conductance for longer molecules. In this respect, several studies involving different molecular backbones and anchoring groups have been performed.
View Article and Find Full Text PDFA facile and environmentally friendly fabrication is proposed to prepare nitrogen-doped hierarchical porous activated carbon via normal-pressure popping, one-pot activation and nitrogen-doping process. The method adopts paddy as carbon precursor, KHCO and dicyandiamide as the safe activating agent and nitrogen dopant. The as-prepared activated carbon presents a large specific surface area of 3025 m·g resulting from the synergistic effect of KHCO and dicyandiamide.
View Article and Find Full Text PDFResistive random access memory (RRAM) devices are receiving increasing extensive attention due to their enhanced properties such as fast operation speed, simple device structure, low power consumption, good scalability potential and so on, and are currently considered to be one of the next-generation alternatives to traditional memory. In this review, an overview of RRAM devices is demonstrated in terms of thin film materials investigation on electrode and function layer, switching mechanisms and artificial intelligence applications. Compared with the well-developed application of inorganic thin film materials (oxides, solid electrolyte and two-dimensional (2D) materials) in RRAM devices, organic thin film materials (biological and polymer materials) application is considered to be the candidate with significant potential.
View Article and Find Full Text PDFThe single molecule conductance of hybrid platinum/alkanedithiol/graphene junctions has been investigated with a focus on understanding the influence of employing two very different contact types. We call this an "anti-symmetric" configuration, with the two different contacts here being platinum and graphene, which respectively provide very different electronic coupling to the alkanedithiol bridge. The conductance of these junctions is experimentally investigated by using a non-contact scanning tunneling microscopy (STM) based method called the I(s) technique.
View Article and Find Full Text PDFResistive random access memory (RRAM), which is considered as one of the most promising next-generation non-volatile memory (NVM) devices and a representative of memristor technologies, demonstrated great potential in acting as an artificial synapse in the industry of neuromorphic systems and artificial intelligence (AI), due its advantages such as fast operation speed, low power consumption, and high device density. Graphene and related materials (GRMs), especially graphene oxide (GO), acting as active materials for RRAM devices, are considered as a promising alternative to other materials including metal oxides and perovskite materials. Herein, an overview of GRM-based RRAM devices is provided, with discussion about the properties of GRMs, main operation mechanisms for resistive switching (RS) behavior, figure of merit (FoM) summary, and prospect extension of GRM-based RRAM devices.
View Article and Find Full Text PDFA novel structure scheme by transposing the gate channel orientation from a long horizontal one to a short vertical one is proposed and verified by technology computer-aided design (TCAD) simulations to achieve GaN-based normally-off high electron mobility transistors (HEMTs) with reduced on-resistance and improved threshold voltage. The proposed devices exhibit high threshold voltage of 3.1 V, high peak transconductance of 213 mS, and much lower on-resistance of 0.
View Article and Find Full Text PDFResistive random access memory (RRAM) devices with Ni/AlO/Pt-structure were manufactured by deposition of a solution-based aluminum oxide (AlO) dielectric layer which was subsequently annealed at temperatures from 200 °C to 300 °C, in increments of 25 °C. The devices displayed typical bipolar resistive switching characteristics. Investigations were carried out on the effect of different annealing temperatures for associated RRAM devices to show that performance was correlated with changes of hydroxyl group concentration in the AlO thin films.
View Article and Find Full Text PDFA combined experimental and theoretical study on molecular junctions with asymmetry in both the electrode type and in the anchoring group type is presented. A scanning tunnelling microscope is used to create the "asymmetric" Au-S-(CH )n-COOH-graphene molecular junctions and determine their conductance. The measurements are combined with electron transport calculations based on density functional theory (DFT) to analyze the electrical conductance and its length attenuation factor from a series of junctions of different molecular length (n).
View Article and Find Full Text PDFA fully metal-free molecular junction (MJ) has been built by using an electrochemically etched carbon fibre STM tip as the top electrode and graphene as the bottom electrode. The corresponding conductance values for 1,n-alkanediamine and 1,n-alkanedithiol (n = 2, 4, 6, 8 and 10) have been measured using the STM-I(s) technique. The tunnelling decay constant of the alkanediamine and alkanedithiol junctions with these carbon contacts is much lower than the corresponding metal contacted junctions of 0.
View Article and Find Full Text PDFIn this study, we introduce an efficient data sorting algorithm, including filters for noisy signals, conductance mapping for analyzing the most dominant conductance group and sub-population groups. The capacity of our data analysis process has also been corroborated on real experimental data sets of Au-1,6-hexanedithiol-Au and Au-1,8-octanedithiol-Au molecular junctions. The fully automated and unsupervised program requires less than one minute on a standard PC to sort the data and generate histograms.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2017
The unique structural and electronic characteristics of graphene make it an attractive contact for fundamental single-molecule electrical studies. With this in mind, we have probed here the electrical conductance of a molecular junction based on α,ω-diaminoalkane chains sandwiched between a gold and a graphene electrode. Using an STM based I(s) method combined with density functional theory-based transport calculations, we demonstrate that the resulting attenuation factor turns out to be much lower when compared to the standard molecular junction between two gold electrodes.
View Article and Find Full Text PDFWe have measured the single-molecule conductance of 1,n-alkanedithiol molecular bridges (n = 4, 6, 8, 10, 12) on a graphene substrate using scanning tunneling microscopy (STM)-formed electrical junctions. The conductance values of this homologous series ranged from 2.3 nS (n = 12) to 53 nS (n = 4), with a decay constant β of 0.
View Article and Find Full Text PDFGraphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of βN = 0.
View Article and Find Full Text PDF