Publications by authors named "Cezar J"

Phytoliths of biogenic silica play a vital role in the silicon biogeochemical cycle and occlude a fraction of organic carbon. The location, chemical speciation, and quantification of this carbon within phytoliths have remained elusive due to limited direct experimental evidence. In this work, phytoliths (bilobate morphotype) from the sugarcane stalk epidermis are sectioned with a focused ion beam to produce lamellas (≈10 × 10 μm2 size, <500 nm thickness) and probed by synchrotron scanning transmission X-ray microspectroscopy (≈100-200 nm pixel size; energies near the silicon and carbon K-absorption edges).

View Article and Find Full Text PDF

Magnetic skyrmions are prime candidates for the next generation of spintronic devices. Skyrmions and other topological magnetic structures are known to be stabilized by the Dzyaloshinskii-Moriya interaction (DMI) that occurs when the inversion symmetry is broken in thin films. Here, we show by first-principles calculations and atomistic spin dynamics simulations that metastable skyrmionic states can also be found in nominally symmetric multilayered systems.

View Article and Find Full Text PDF

Background: The etiology of inflammatory bowel disease (IBD) is unknown, but it is believed to be multifactorial. The hygiene hypothesis proposes that better hygiene conditions would lead to less infectious disease during childhood and favor the development of immune-mediated diseases.

Aim: To test the hygiene hypothesis in IBD by assessing the environmental risk factors associated with IBD development in different regions of Brazil with diverse socioeconomic development indices.

View Article and Find Full Text PDF

Magnetic skyrmions are promising candidates for the next generation of spintronic devices due to their small size and topologically protected structure. One challenge for using these magnetic states in applications lies on controlling the nucleation process and stabilization that usually requires an external force. Here, we report on the evidence of skyrmions in unpatterned symmetric Pd/Co/Pd multilayers at room temperature without prior application of neither electric current nor magnetic field.

View Article and Find Full Text PDF

In this work, we explore a kind of geometrical effect in the thermodynamics of artificial spin ices (ASI). In general, such artificial materials are athermal. Here, We demonstrate that geometrically driven dynamics in ASI can open up the panorama of exploring distinct ground states and thermally magnetic monopole excitations.

View Article and Find Full Text PDF

A compact ultrahigh-vacuum molecular-beam deposition system has been developed for the in situ synthesis of organic thin films and multilayers. The system incorporates all the features (heater, thickness monitor, evaporators) necessary for controlled organic thin-film growth. It can be used independently, or it can be docked to the in situ growth system and transferred to other instruments of the PGM beamline, thus allowing extensive film preparation and characterization.

View Article and Find Full Text PDF

Drug users have been reported to have an increased risk for acquisition of viral hepatitis. This study aims to evaluate the prevalence of HBV and HCV infection and usefulness of saliva for HBsAg and anti-HCV detection in alcoholic patients.A total of 90 alcoholic patients were recruited in 2013.

View Article and Find Full Text PDF
Article Synopsis
  • - This study assessed the effects of anethole on inflammation and joint damage in rats with adjuvant-induced arthritis (AIA) by administering varying doses of anethole over 21 days.
  • - Results indicated that anethole significantly reduced paw swelling, decreased the number of inflammatory cells, and lowered cytokine and nitric oxide levels, with the highest dose (250 mg/kg) proving most effective.
  • - Histological analysis showed that anethole treatment led to less cartilage damage and inflammatory infiltration, suggesting it could be a promising treatment for inflammatory arthritis.
View Article and Find Full Text PDF

Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer.

View Article and Find Full Text PDF

The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag.

View Article and Find Full Text PDF

Using X-ray absorption spectroscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for charge transfer at the interface between the Mott insulators Sm2 CuO4 and LaFeO3 is obtained. As a consequence of the charge transfer, the Sm2 CuO4 is doped with electrons and thus epitaxial Sm2 CuO4 /LaFeO3 heterostructures become metallic.

View Article and Find Full Text PDF

Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlO(x)) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain walls start moving, with a constant speed, as soon as the current reaches a constant amplitude, and no or little motion takes place after the end of the pulse. The very low "mass" of these domain walls is attributed to the combination of their narrow width and high damping parameter α.

View Article and Find Full Text PDF

Polarization dependent vanadium L edge x-ray absorption spectra of BaVS(3) single crystals are measured in the four phases of the compound. The difference between signals with the polarizations E perpendicular to c and E is parallel to c (linear dichroism) changes with temperature. Besides increasing the intensity of one of the maxima, a new structure appears in the pre-edge region below the metal-insulator transition.

View Article and Find Full Text PDF

We have been able to induce a linear dichroic signal in the Yb M(5) x-ray absorption white line of cubic YbInNi(4) by the application of a magnetic field. The nonzero integrated intensity of the magnetic field induced dichroic spectrum indicates a net noncubic 4f orbital polarization. A quantitative analysis of the temperature and field strength dependence establishes that the crystal-field ground state is a Γ(8) quartet.

View Article and Find Full Text PDF

Current-induced domain wall motion and magnetization dynamics in the CoFeB layer of CoFeB/Cu/Co nanostripes were studied using photoemission electron microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM). Quasi-static measurements show that current-induced domain wall motion in the CoFeB layer is similar to the one observed in the NiFe layer of NiFe/Cu/Co trilayers, although the threshold current densities for domain wall depinning are lower. Time-resolved XMCD-PEEM measurements are used as an efficient probe of domain wall depinning statistics.

View Article and Find Full Text PDF

We show, by complementary spectroscopic and STM analysis, that Cr(7)Ni derivatives are suitable to be sublimed in UHV conditions. Cr(7)Ni-bu weakly bonds to gold surface and can diffuse relatively freely on it, forming monolayers with hexagonal 2D packing. Conversely, by adding a functional thiol group to the central dibutylamine, a covalent bond between the molecule and surface gold adatoms is promoted, leading to a strong molecular grafting and the formation of a disordered monolayer.

View Article and Find Full Text PDF

Surface-supported arrays of Fe(4)-type Single-Molecule Magnets retain a memory effect and are of current interest in the frame of molecule-based information storage and spintronics. To reveal the spin structure of [Fe(4)(L)(2)(dpm)(6)] (1) on Au, an isomorphous compound [Fe(3)Cr(L)(2)(dpm)(6)] was synthesized and structurally and magnetically characterized (H(3)L is tripodal ligand 11-(acetylthio)-2,2-bis(hydroxymethyl)undecan-1-ol and Hdpm is dipivaloylmethane). The new complex contains a central Cr(3+) ion and has a S = 6 ground state as opposed to S = 5 in 1.

View Article and Find Full Text PDF

A fundamental step towards atomic- or molecular-scale spintronic devices has recently been made by demonstrating that the spin of an individual atom deposited on a surface, or of a small paramagnetic molecule embedded in a nanojunction, can be externally controlled. An appealing next step is the extension of such a capability to the field of information storage, by taking advantage of the magnetic bistability and rich quantum behaviour of single-molecule magnets (SMMs). Recently, a proof of concept that the magnetic memory effect is retained when SMMs are chemically anchored to a metallic surface was provided.

View Article and Find Full Text PDF

We report on a comparative study of electronic and magnetic properties of Mn6 single-molecule magnets (SMMs) grafted on gold surface. Two derivatives with spin-ground states S=4 and S=12 have been functionalized with 3-tp-CO2- (3-thiophene carboxylate, tpc) ligands and characterized as thick films (TFs) as well as sub-monolayers (sMLs) by synchrotron based techniques. X-ray absorption spectroscopy at the Mn L2,3 edges shows the modification of the spectral lineshape in the sMLs with respect to the TFs suggesting that the local symmetry at the Mn sites changes once the molecules are deposited on gold surface.

View Article and Find Full Text PDF

In systems with strong electron-lattice coupling, such as manganites, orbital degeneracy is lifted, causing a null expectation value of the orbital magnetic moment. Magnetic structure is thus determined by spin-spin superexchange. In titanates, however, with much smaller Jahn-Teller distortions, orbital degeneracy might allow non-zero values of the orbital magnetic moment, and novel forms of ferromagnetic superexchange interaction unique to t(2g) electron systems have been theoretically predicted, although their experimental observation has remained elusive.

View Article and Find Full Text PDF

An energy-dispersive X-ray absorption spectroscopy beamline mainly dedicated to X-ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending-magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set-up. The beamline performance is then illustrated through two case studies on strongly correlated transition metal oxides: an XMCD insight into the modifications of the magnetic properties of Cr-doped manganites and the structural deformation in nickel perovskites under high applied pressure.

View Article and Find Full Text PDF