Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease characterized by excessive collagen deposition and fibrosis of the lung parenchyma, leading to respiratory failure. The molecular mechanisms underlying IPF pathogenesis remain incompletely understood, hindering the development of effective therapeutic strategies. We have used a network medicine approach to comprehensively analyze molecular interactions and identify novel molecular signatures and potential therapeutics associated with IPF progression.
View Article and Find Full Text PDFInfection with SARS-CoV2, which is responsible for COVID-19, can lead to differences in disease development, severity and mortality rates depending on gender, age or the presence of certain diseases. Considering that existing studies ignore these differences, this study aims to uncover potential differences attributable to gender, age and source of sampling as well as viral load using bioinformatics and multi-omics approaches. Differential gene expression analyses were used to analyse the phenotypic differences between SARS-CoV-2 patients and controls at the mRNA level.
View Article and Find Full Text PDFLung adenocarcinoma (LUAD) is a significant planetary health challenge with its high morbidity and mortality rate, not to mention the marked interindividual variability in treatment outcomes and side effects. There is an urgent need for robust systems biomarkers that can help with early cancer diagnosis, prediction of treatment outcomes, and design of precision/personalized medicines for LUAD. The present study aimed at systems biomarkers of LUAD and deployed integrative bioinformatics and machine learning tools to harness gene expression data.
View Article and Find Full Text PDFIdiopathic pulmonary arterial hypertension (IPAH) is a progressive disease that affects the pulmonary arteries, resulting in increased pulmonary vascular resistance and right ventricular dysfunction, which can ultimately lead to heart failure and death. The molecular substrates of IPAH are poorly understood while diagnostics and therapeutics innovation remain as unmet needs for this debilitating disease. In this study, a network-based methodology was used to uncover the salient molecular mechanisms of IPAH to inform drug and diagnostic discovery, and personalized medicine.
View Article and Find Full Text PDFFront Genet
October 2022
Ovarian cancer is the second most common gynecologic cancer and remains the leading cause of death of all gynecologic oncologic disease. Therefore, understanding the molecular mechanisms underlying the disease, and the identification of effective and predictive biomarkers are invaluable for the development of diagnostic and treatment strategies. In the present study, a differential co-expression network analysis was performed meta-analysis of three transcriptome datasets of serous ovarian adenocarcinoma to identify novel candidate biomarker signatures, i.
View Article and Find Full Text PDFCardiovascular disease (CVD) is the leading cause of death among adults in developed countries. Among CVDs, abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) are of great public health importance because of the high mortality rate in the elderly population. Despite significant molecular insights into AAA and AOD, the molecular mechanisms of these diseases remain unclear, and the current lack of robust diagnostic and prognostic biomarkers requires novel approaches to biomarker discovery and molecular targeting.
View Article and Find Full Text PDFIn the burgeoning demand for optimization of cheese production, ascertaining cheese flavour formation during the cheese making process has been the focal point of determining cheese quality. In this research reflection, we have highlighted how valuable volatile organic compound (VOC) analysis has been in assessing contingent cheese flavour compounds arising from non-starter lactic acid bacteria (NSLAB) along with starter lactic acid bacteria (SLAB), and whether VOC analysis associated with other high-throughput data might help provide a better understanding the cheese flavour formation during cheese process. It is widely known that there is a keen interest to merge all omics data to find specific biomarkers and/or to assess aroma formation of cheese.
View Article and Find Full Text PDFThe current trend in industrial biotechnology is to move from batch or fed-batch fermentations to continuous operations. The success of this transition will require the development of genetically stable production strains, the use of strong constitutive promoters, and the development of new medium formulations that allow an appropriate balance between cell growth and product formation. We identified genes that showed high expression in Komagataella phaffii during different steady-state conditions and explored the utility of promoters of these genes (Chr1-4_0586 and FragB_0052) in optimizing the expression of two different r-proteins, human lysozyme (HuLy), and the anti-idiotypic antibody fragment, Fab-3H6, in comparison with the widely used glyceraldehyde-3-phosphate dehydrogenase promoter.
View Article and Find Full Text PDFLevan is a fructan type polysaccharide that has long been considered as an industrially important biopolymer however its limited availability is mainly due to the bottlenecks associated with its large-scale production. To overcome such bottlenecks in the commercialization of this very promising polysaccharide, co-production of levan with polyhydroxyalkanoates (PHAs) by halophilic Halomonas smyrnensis cultures has been proposed in this study for the first time. After in silico and in vitro assessment of PHA accumulation, fermentation profiles for levan and PHA concentrations were obtained in the presence of sucrose and glucose and the PHA granules observed by TEM were found to be poly(3-hydroxybutyrate) (PHB) after detailed structural characterization by GC-MS, DSC, FTIR and NMR.
View Article and Find Full Text PDFThe accumulation of ethanol is one of the main environmental stresses that Saccharomyces cerevisiae cells are exposed to in industrial alcoholic beverage and bioethanol production processes. Despite the known impacts of ethanol, the molecular mechanisms underlying ethanol tolerance are still not fully understood. Novel gene targets leading to ethanol tolerance were previously identified via a network approach and the investigations of the deletions of these genes resulted in the improved ethanol tolerance of pmt7Δ/pmt7Δ and yhl042wΔ/yhl042wΔ strains.
View Article and Find Full Text PDFBackground: Saccharomyces cerevisiae has been widely used for bio-ethanol production and development of rational genetic engineering strategies leading both to the improvement of productivity and ethanol tolerance is very important for cost-effective bio-ethanol production. Studies on the identification of the genes that are up- or down-regulated in the presence of ethanol indicated that the genes may be involved to protect the cells against ethanol stress, but not necessarily required for ethanol tolerance.
Results: In the present study, a novel network based approach was developed to identify candidate genes involved in ethanol tolerance.