Dielectric ceramics with high energy storage performance are crucial for the development of advanced high-power capacitors. However, achieving ultrahigh recoverable energy storage density and efficiency remains challenging, limiting the progress of leading-edge energy storage applications. In this study, (BiNa)TiO (BNT) is selected as the matrix, and the effects of different A-site elements on domain morphology, lattice polarization, and dielectric and ferroelectric properties are systematically investigated.
View Article and Find Full Text PDFDielectric-based energy storage capacitors characterized with fast charging and discharging speed and reliability play a vital role in cutting-edge electrical and electronic equipment. In pursuit of capacitor miniaturization and integration, dielectrics must offer high energy density and efficiency. Antiferroelectrics with antiparallel dipole configurations have been of significant interest for high-performance energy storage due to their negligible remanent polarization and high maximum polarization in the field-induced ferroelectric state.
View Article and Find Full Text PDFFilm capacitors are widely used in advanced electrical and electronic systems. The temperature stability of polymer dielectrics plays a critical role in supporting their performance operation at elevated temperatures. For the last decade, the investigations for new polymer dielectrics with high energy storage performance at higher temperatures (>200 °C) have attracted much attention and numerous strategies have been employed.
View Article and Find Full Text PDFCeramic capacitors with ultrahigh power density are crucial in modern electrical applications, especially under high-temperature conditions. However, the relatively low energy density limits their application scope and hinders device miniaturization and integration. In this work, we present a high-entropy BaTiO-based relaxor ceramic with outstanding energy storage properties, achieving a substantial recoverable energy density of 10.
View Article and Find Full Text PDFNext-generation advanced high/pulsed power capacitors rely heavily on dielectric ceramics with high energy storage performance. Although high entropy relaxor ferroelectric exhibited enormous potential in functional materials, the chemical short-range order, which is a common phenomenon in high entropy alloys to modulate performances, have been paid less attention here. We design a chemical short-range order strategy to modulate polarization response under external electric field and achieve substantial enhancements of energy storage properties, i.
View Article and Find Full Text PDFPolymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.
View Article and Find Full Text PDFSkyrmion bags, with arbitrary topological charge Q, have recently attracted much interest, since such high-Q topological systems could open a way for topological magnetism research and are promising for spintronic applications with high flexibility for information encoding. Investigation on room-temperature skyrmion bags in magnetic multilayered structures is essential for applications and remains unexplored so far. Here, we demonstrate room-temperature creation and manipulation of individual skyrmion bags in magnetic multilayered disks.
View Article and Find Full Text PDFThe safety and cycle stability of lithium metal batteries (LMBs) under conditions of high cut-off voltage and fast charging put forward higher requirements for electrolytes. Here, a sulfonate-based deep eutectic electrolyte (DEE) resulting from the eutectic effect between solid sultone and lithium bis(trifluoromethanesulfonyl)imide without any other additives is reported. The intermolecular coordination effect triggers this eutectic phenomenon, as evidenced with nuclear magnetic resonance, and thus the electrochemical behavior of the DEE can be controlled by jointly regulating the coordination effects of F···H and Li···O intermolecular interactions.
View Article and Find Full Text PDFSymmetry engineering is explicitly effective to manipulate and even create phases and orderings in strongly correlated materials. Flexural stress is universally practical to break the space-inversion or time-reversal symmetry. Here, by introducing strain gradient in a centrosymmetric antiferromagnet Sr_{2}IrO_{4}, the space-inversion symmetry is broken accompanying a nonequivalent O p-Ir d orbital hybridization along the z axis.
View Article and Find Full Text PDFHfO-based ferroelectric materials are emerging as key components for next-generation nanoscale devices, owing to their exceptional nanoscale properties and compatibility with established silicon-based electronics infrastructure. Despite the considerable attention garnered by the ferroelectric orthorhombic phase, the polar rhombohedral phase has remained relatively unexplored due to the inherent challenges in its stabilization. In this study, the successful synthesis of a distinct ferroelectric rhombohedral phase is reported, i.
View Article and Find Full Text PDFThermoelectrics converting heat and electricity directly attract broad attentions. To enhance the thermoelectric figure of merit, zT, one of the key points is to decouple the carrier-phonon transport. Here, we propose an entropy engineering strategy to realize the carrier-phonon decoupling in the typical SrTiO-based perovskite thermoelectrics.
View Article and Find Full Text PDFManipulating optical chirality via electric fields has garnered considerable attention in the realm of both fundamental physics and practical applications. Chiral ferroelectrics, characterized by their inherent optical chirality and switchable spontaneous polarization, are emerging as a promising platform for electronic-photonic integrated circuits applications. Unlike organics with chiral carbon centers, integrating chirality into technologically mature inorganic ferroelectrics has posed a long-standing challenge.
View Article and Find Full Text PDFPrinting technology enables the integration of chemically exfoliated perovskite nanosheets into high-performance microcapacitors. Theoretically, the capacitance value can be further enhanced by designing and constructing multilayer structures without increasing the device size. Yet, issues such as interlayer penetration in multilayer heterojunctions constructed using inkjet printing technology further limit the realization of this potential.
View Article and Find Full Text PDFHybrid halide perovskites are good candidates for a range of functional materials such as optical electronic and photovoltaic devices due to their tunable band gaps, long carrier diffusion lengths, and solution processability. However, the instability in moisture/air, the toxicity of lead, and rigorous reaction setup or complex postprocessing have long been the bottlenecks for practical application. Herein, we present a simultaneous configurational entropy design at A-sites, B-sites, and X-sites in the typical (CHA)PbBr two-dimensional (2D) hybrid perovskite.
View Article and Find Full Text PDFFlexible polymer-based dielectrics with high energy storage characteristics over a wide temperature range are crucial for advanced electrical and electronic systems. However, the intrinsic low dielectric constant and drastically degraded breakdown strength hinder the development of polymer-based dielectrics at elevated temperatures. Here, we propose a magnetic-assisted approach for fabricating a polyethyleneimine (PEI)-based nanocomposite with precisely aligned nanofibers within the polymer matrix, and with AlO deposition layers applied on the surface.
View Article and Find Full Text PDFDielectric capacitors offer great potential for advanced electronics due to their high power densities, but their energy density still needs to be further improved. High-entropy strategy has emerged as an effective method for improving energy storage performance, however, discovering new high-entropy systems within a high-dimensional composition space is a daunting challenge for traditional trial-and-error experiments. Here, based on phase-field simulations and limited experimental data, we propose a generative learning approach to accelerate the discovery of high-entropy dielectrics in a practically infinite exploration space of over 10 combinations.
View Article and Find Full Text PDFThe compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations.
View Article and Find Full Text PDFFerroelectric materials have important applications in transduction, data storage, and nonlinear optics. Inorganic ferroelectrics such as lead zirconate titanate possess large polarization, though they are rigid and brittle. Ferroelectric polymers are light weight and flexible, yet their polarization is low, bottlenecked at 10 μC cm.
View Article and Find Full Text PDFMXene inks offer a promising avenue for the scalable production and customization of printing electronics. However, simultaneously achieving a low solid content and printability of MXene inks, as well as mechanical flexibility and environmental stability of printed objects, remains a challenge. In this study, we overcame these challenges by employing high-viscosity aramid nanofibers (ANFs) to optimize the rheology of low-concentration MXene inks.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries offer high theoretical capacity but are hindered by poor rate capability and cycling stability due to sluggish LiS precipitation kinetics. Here a sulfonate-group-rich liquid crystal polymer (poly-2,2'-disulfonyl-4,4'-benzidine terephthalamide, PBDT) is designed and fabricated to accelerate LiS precipitation by promoting the desolvation of Li from electrolyte. PBDT-modified separators are employed to assemble Li-S batteries, which deliver a remarkable rate capacity (761 mAh g at 4 C) and cycling stability (500 cycles with an average decay rate of 0.
View Article and Find Full Text PDFPolar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional CaCoO. This material crystallizes with alternating stacking of oxygen tetrahedral CoO monolayers and octahedral CoO bilayers.
View Article and Find Full Text PDFUltrahigh-power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO)-based lead-free MLCCs with polymorphic relaxor phase.
View Article and Find Full Text PDF