Over the past several decades, substantial ground has been gained in understanding the biology of sex differences. With new mandates to include sex as a biological variable in NIH-funded research, greater knowledge is forthcoming on how sex chromosomes, sex hormones, and social and societal differences between sexes can affect the pathophysiology of health and disease. A detailed picture of how biological sex impacts disease pathophysiology will directly inform clinicians in their treatment approaches and challenge canonical therapeutic strategies.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are organic pollutants that can have lasting impacts on offspring health. Here, we sought to examine maternal and fetal gene expression differences of aryl hydrocarbon receptor (AHR)-regulated genes in a mouse model of prenatal PCB126 exposure. Female mice were bred and gavaged with 1 µmole/kg bodyweight PCB126 or vehicle control on embryonic days 0 and 14, and maternal and fetal tissues were collected on embryonic day 18.
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are persistent environmental organic pollutants known to have detrimental health effects. Using a mouse model, we previously demonstrated that PCB126 exposure before and during pregnancy and throughout the perinatal period adversely affected offspring glucose tolerance and/or body composition profiles. The purpose of this study was to investigate the glucose tolerance and body composition of offspring born to dams exposed to PCB126 during the nursing period only.
View Article and Find Full Text PDFTris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphate flame retardant. The primary TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), is detectable in the urine of over 90 % of Americans. Epidemiological studies show sex-specific associations between urinary BDCPP levels and metabolic syndrome, which is an established risk factor for type 2 diabetes, heart disease, and stroke.
View Article and Find Full Text PDFHumans are ubiquitously exposed bisphenol A (BPA), and epidemiological studies show a positive association between BPA exposure and diabetes risk, but the impact of parental exposure on offspring diabetes risk in humans is unknown. Our previous studies in mice show disruption of metabolic health upon maternal BPA exposure. The current study was undertaken to determine whether exposure in fathers causes adverse metabolic consequences in offspring.
View Article and Find Full Text PDFContext: Gestational diabetes (GDM) has profound effects on the intrauterine metabolic milieu and is linked to obesity and diabetes in offspring, but the mechanisms driving these effects remain largely unknown. Alterations in DNA methylation and gene expression in amniocytes exposed to GDM in utero represent a potential mechanism leading to metabolic dysfunction later in life.
Objective: To profile changes in genome-wide DNA methylation and expression in human amniocytes exposed to GDM.
Physiology (Bethesda)
September 2018
Intrauterine growth restriction (IUGR) leads to reduced birth weight and the development of metabolic diseases such as Type 2 diabetes in adulthood. Mitochondria dysfunction and oxidative stress are commonly found in key tissues (pancreatic islets, liver, and skeletal muscle) of IUGR individuals. In this review, we explore the role of oxidative stress in IUGR-associated diabetes etiology.
View Article and Find Full Text PDFIntrauterine growth restriction (IUGR) increases the risk of type 2 diabetes developing in adulthood. In previous studies that used bilateral uterine artery ligation in a rat model of IUGR, age-associated decline in glucose homeostasis and islet function was revealed. To elucidate mechanisms contributing to IUGR pathogenesis, the islet transcriptome was sequenced from 2-week-old rats, when in vivo glucose tolerance is mildly impaired, and at 10 weeks of age, when rats are hyperglycemic and have reduced β-cell mass.
View Article and Find Full Text PDFBackground: Exposure to the environmental endocrine disruptor bisphenol A (BPA) is ubiquitous and associated with the increased risk of diabetes and obesity. However, the underlying mechanisms remain unknown. We recently demonstrated that perinatal BPA exposure is associated with higher body fat, impaired glucose tolerance, and reduced insulin secretion in first- (F1) and second-generation (F2) C57BL/6J male mice offspring.
View Article and Find Full Text PDFBackground: There is no effective therapeutic intervention developed targeting cerebrovascular toxicity of drugs of abuse, including methamphetamine (METH). We hypothesize that exercise protects against METH-induced disruption of the blood-brain barrier (BBB) by enhancing the antioxidant capacity of cerebral microvessels and modulating caveolae-associated signaling. Mice were subjected to voluntary wheel running for 5 weeks resembling the voluntary pattern of human exercise, followed by injection with METH (10 mg/kg).
View Article and Find Full Text PDFPolychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants whose exposure levels are associated with various health hazards. We hypothesized that in utero and lactational exposure to PCBs can cause changes in body composition and obesity in a mouse model. Pregnant mice were exposed biweekly to two concentrations of PCB 126 via oral gavage.
View Article and Find Full Text PDFNewborn foals are very susceptible to infections by opportunistic pathogens such as Rhodococcus equi. This susceptibility is thought to be due to the immaturity of their immune system, in particular their inability to produce interferon-gamma. This deficiency may result from an insufficiency in accessory signals.
View Article and Find Full Text PDF