Publications by authors named "Cesbron-Delauw M"

Apicomplexa comprise important pathogenic parasitic protists that heavily depend on lipid acquisition to survive within their human host cells. Lipid synthesis relies on the incorporation of an essential combination of fatty acids (FAs) either generated by a metabolically adaptable de novo synthesis in the parasite or by scavenging from the host cell. The incorporation of FAs into membrane lipids depends on their obligate metabolic activation by specific enzyme groups, acyl-CoA synthetases (ACSs).

View Article and Find Full Text PDF

Apicomplexa are obligate intracellular parasites responsible for major human diseases. Their intracellular survival relies on intense lipid synthesis, which fuels membrane biogenesis. Parasite lipids are generated as an essential combination of fatty acids scavenged from the host and de novo synthesized within the parasite apicoplast.

View Article and Find Full Text PDF

In human ocular toxoplasmosis, serotype is related with greater severity. We analyzed Toxoplasma GRA6 serotype in 23 patients with ocular toxoplasmosis (13 confirmed, two co-infections- and eight unconfirmed cases) and 20 individuals chronically infected with Toxoplasma but without ocular involvement. In patients with ocular toxoplasmosis, we also studied host gene polymorphisms related to immune response (IL-1β; IL-1α; IL-10; IFN-γ; TNF-α, IL-12), IL-17R, TLR-9, and P2RX7.

View Article and Find Full Text PDF

We examined activities of dense granule proteins (GRAs), which Toxoplasma gondii secretes within infected cells, to stimulate microglial IFN-γ production in vitro. We identified that the N-terminal region (amino acids 41-152) of GRA6 (GRA6Nt) stimulates IFN-γ production by both a microglia cell line and primary microglia purified from the brains of uninfected adult mice. In contrast, neither of GRA1, GRA2, GRA5Nt, nor the carboxyl-terminal (amino acids 174-224) of GRA6 stimulated microglial IFN-γ production.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how certain dense granule (GRA) proteins associated with the membranes of parasitophorous vacuoles (PVM) and intravacuolar networks (IVN) influence the development of both acute and chronic infections in a particular strain of parasites.
  • Deleting key GRA proteins, especially in low-virulence strains, led to significant issues in forming chronic cysts without impacting the parasites' growth or their ability to become cysts.
  • The research highlights the role of GRA12 in resisting host immune responses, showing that while some parasite strains can evade certain host defenses, they ultimately can't withstand the innate immunity activated by interferon-gamma (IFN-γ), resulting in the failure
View Article and Find Full Text PDF

Toxoplasmosis is considered as an opportunistic parasitic disease. If post-natally acquired in children or adults, it may pass unnoticed, at least with strains of European origin. However, in the wild biotopes especially in South America, strains display a greater genetic diversity, which correlates to higher virulence for humans, particularly along the Amazon River and its tributaries.

View Article and Find Full Text PDF

Toxoplasma gondii is an intracellular protozoan parasite widely distributed in animals and humans. Infection of host cells and parasite proliferation are essential steps in Toxoplasma pathology. The objective of this study was to develop and validate a novel automatic High Content Imaging (HCI) assay to study T.

View Article and Find Full Text PDF

, an obligate intracellular protozoan parasite, establishes a chronic infection by forming cysts preferentially in the brain. Up to one third of the human population worldwide is estimated to be chronically infected with this parasite. However, there is currently no drug effective against the cyst form of the parasite.

View Article and Find Full Text PDF

Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII.

View Article and Find Full Text PDF
Article Synopsis
  • Toxoplasma gondii invades host cells and creates a structure called a parasitophorous vacuole (PV), accumulating various dense granule proteins (GRA proteins), of which 23 are known but most functions are unclear.
  • * Researchers conducted gene knockouts on GRA genes (GRA1-10) to uncover their roles during acute infections in a specific strain, finding that most knockouts showed defects in infection rates, but not in replication rates.
  • * The study indicates that while some GRA proteins (GRA2-9) are not essential on their own, they might have overlapping functions that are important for the parasite’s survival and effectiveness during infection.
View Article and Find Full Text PDF

Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the membranous nanotubular network (MNN) in the parasitophorous vacuole (PV) where Toxoplasma gondii thrives, highlighting its unclear function.
  • It focuses on two proteins, GRA2 and GRA6, known to influence the MNN's formation, suggesting that their specific structural features (like alpha-helices) play a key role in their interactions with membranes.
  • Experimental results using methods like circular dichroism and electron microscopy reveal that GRA2 has a distinct alpha-helical structure, while variations of GRA2 and GRA6 result in smaller particle formations, pointing to the importance of GRA2's structural characteristics in the nanotubular network
View Article and Find Full Text PDF

In Toxoplasma gondii, dense granules are known as the storage secretory organelles of the so-called GRA proteins (for dense granule proteins), which are destined to the parasitophorous vacuole (PV) and the PV-derived cyst wall. Recently, newly annotated GRA proteins targeted to the host cell nucleus have enlarged this view. Here we provide an update on the latest developments on the Toxoplasma secreted proteins, which to date have been mainly studied at both the tachyzoite and bradyzoite stages, and we point out that recent discoveries could open the issue of a possible, yet uncharacterized, distinct secretory pathway in Toxoplasma.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how certain rats can resist a parasite called Toxoplasma.
  • They found a specific part of a rat's DNA, called Toxo1, that helps fight the parasite and control its spread.
  • By looking at different rat strains, they discovered that a protein called NLRP1a plays a key role in how these rats kill off the parasites and the infected cells.
View Article and Find Full Text PDF

ALOX12 is a gene encoding arachidonate 12-lipoxygenase (12-LOX), a member of a nonheme lipoxygenase family of dioxygenases. ALOX12 catalyzes the addition of oxygen to arachidonic acid, producing 12-hydroperoxyeicosatetraenoic acid (12-HPETE), which can be reduced to the eicosanoid 12-HETE (12-hydroxyeicosatetraenoic acid). 12-HETE acts in diverse cellular processes, including catecholamine synthesis, vasoconstriction, neuronal function, and inflammation.

View Article and Find Full Text PDF

A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum.

View Article and Find Full Text PDF

The migration of DCs is a critical function, enabling information to be carried to where the immunological response occurs. Parasites are known to weaken host immunity by interfering with the functions of DCs and thus, may be a source of molecules with immunomodulatory properties. Here, we demonstrate that the soluble protein, GRA5, specific to Toxoplasma gondii, is able to increase the migration of human CD34-DCs toward CCL19.

View Article and Find Full Text PDF

Toxoplasma gondii is the causative agent of toxoplasmosis, one of the most widespread infections in humans and animals, and is a major opportunistic pathogen in immunocompromised patients. Toxoplasma gondii is unique as it can invade virtually any nucleated cell, although the mechanisms are not completely understood. Parasite attachment to the host cell is a prerequisite for reorientation and penetration and likely requires the recognition of molecules at the host cell surface.

View Article and Find Full Text PDF

We examined whether tachyzoite proliferation in the brains of immunocompetent hosts during the chronic stage of infection with Toxoplasma gondii induces production of IgG antibodies that recognize parasite antigens different from those recognized by the antibodies of infected hosts that do not have tachyzoite growth. For this purpose, two groups of CBA/J mice, which display continuous tachyzoite growth in their brains during the later stage of infection, were infected, and one group received treatment with sulfadiazine to prevent tachyzoite proliferation during the chronic stage of infection. T.

View Article and Find Full Text PDF

Glutamine amidotransferase/aminodeoxychorismate synthase (GAT-ADCS) is a bifunctional enzyme involved in the synthesis of p-aminobenzoate, a central component part of folate cofactors. GAT-ADCS is found in eukaryotic organisms autonomous for folate biosynthesis, such as plants or parasites of the phylum Apicomplexa. Based on an automated screening to search for new inhibitors of folate biosynthesis, we found that rubreserine was able to inhibit the glutamine amidotransferase activity of the plant GAT-ADCS with an apparent IC(50) of about 8 μM.

View Article and Find Full Text PDF

Toxplasma is a protozoan parasite, which forms persistent cysts in tissues of chronically infected animals and humans. Cysts can reactivate leading to severe pathologies. They also contribute to the transmission of Toxoplasma infection in humans by ingestion of undercooked meat.

View Article and Find Full Text PDF

Type II Toxoplasma gondii KU80 knockouts (Δku80) deficient in nonhomologous end joining were developed to delete the dominant pathway mediating random integration of targeting episomes. Gene targeting frequency in the type II Δku80 Δhxgprt strain measured at the orotate (OPRT) and the uracil (UPRT) phosphoribosyltransferase loci was highly efficient. To assess the potential of the type II Δku80 Δhxgprt strain to examine gene function affecting cyst biology and latent stages of infection, we targeted the deletion of four parasite antigen genes (GRA4, GRA6, ROP7, and tgd057) that encode characterized CD8(+) T cell epitopes that elicit corresponding antigen-specific CD8(+) T cell populations associated with control of infection.

View Article and Find Full Text PDF

NALP1 is a member of the NOD-like receptor (NLR) family of proteins that form inflammasomes. Upon cellular infection or stress, inflammasomes are activated, triggering maturation of proinflammatory cytokines and downstream cellular signaling mediated through the MyD88 adaptor. Toxoplasma gondii is an obligate intracellular parasite that stimulates production of high levels of proinflammatory cytokines that are important in innate immunity.

View Article and Find Full Text PDF

Fatal neurodegenerative prion diseases are caused by the transmissible PrP(Sc) prion agent whose initial replication after peripheral inoculation takes place in follicular dendritic cells present in germinal centers of lymphoid organs. However, prion replication also occurs in lymphoid cells. To assess the role of the hematopoietic compartment in neuroinvasion and prion replication, we generated chimeric mice, on a uniform congenic C57/BL6J background, by bone marrow replacement with hematopoietic cells expressing different levels of PrP protein.

View Article and Find Full Text PDF