We study the condensate and superfluid fraction of a homogeneous gas of weakly interacting bosons in three spatial dimensions by adopting a self-consistent Popov approximation, comparing this approach with other theoretical schemes. Differently from the superfluid fraction, we find that at finite temperature the condensate fraction is a non-monotonic function of the interaction strength, presenting a global maximum at a characteristic value of the gas parameter, which grows as the temperature increases. This non-monotonic behavior has not yet been observed, but could be tested with the available experimental setups of ultracold bosonic atoms confined in a box potential.
View Article and Find Full Text PDF