Publications by authors named "Cesare Pacioni"

Understanding the potential limits placed on organisms by their ecophysiology is crucial for predicting their responses to varying environmental conditions. A main hypothesis for explaining avian thermoregulatory mechanisms is the aerobic capacity model, which posits a positive correlation between basal (basal metabolic rate [BMR]) and summit (M) metabolism. Most evidence for this hypothesis, however, comes from interspecific comparisons, and the ecophysiological underpinnings of avian thermoregulatory capacities hence remain controversial.

View Article and Find Full Text PDF

Understanding how birds annually allocate energy to cope with changing environmental conditions and physiological states is a crucial question in avian ecology. There are several hypotheses to explain species' energy allocation. One prominent hypothesis suggests higher energy expenditure in winter due to increased thermoregulatory costs.

View Article and Find Full Text PDF

Effective management of invasive species requires accurate predictions of their invasion potential in different environments. By considering species' physiological tolerances and requirements, biophysical mechanistic models can potentially deliver accurate predictions of where introduced species are likely to establish. Here, we evaluate biophysical model predictions of energy use by comparing them to experimentally obtained energy expenditure (EE) and thermoneutral zones (TNZs) for the common waxbill , a small-bodied avian invader.

View Article and Find Full Text PDF

A species' potential geographical range is largely determined by how the species responds physiologically to its changing environment. It is therefore crucial to study the physiological mechanisms that species use to maintain their homeothermy in order to address biodiversity conservation challenges, such as the success of invasions of introduced species. The common waxbill Estrilda astrild, the orange-cheeked waxbill E.

View Article and Find Full Text PDF

The study analyzes red deer responses to disturbances during the day and different exposures to tourists, to establish the more appropriate times to carry out activities inside the Paneveggio deer enclosure. The alarm reactions of red deer were observed after presenting different types of visual stimuli inside and outside the fence, in order to answer some questions: Which stimuli produce the strongest reactions from the animals? Do animals differently react to stimuli presented outside and inside the fence? On which days and times are the animals more sensitive to disturbances? Are there different reactions between the males and females? The results suggest that the red deer adversely react to the disturbance at different degrees of intensity in relation to day, sex, tourist and where the stimuli are presented. It was observed that during the days with the highest tourist presence, the animals were particularly alarmed; discomfort accumulation produced the highest number of alarm reactions on Monday.

View Article and Find Full Text PDF

The analysis of body shape variability has always been a central element in biology. More recently, geometric morphometry has developed as a new field in shape analysis, with the aim to study body morphological variations and the identification of their causes. In wildlife management, geometric morphometry could be a useful tool to compare the anatomical structures of an organism and quantify its geometric information in order to relate them to environmental factors, thus identifying the causes and effects of the variation and acting management and/or conservation plans.

View Article and Find Full Text PDF

Study of dimensions (biometry) and shapes (geometric morphometry) of bone structures in ungulates is of extreme importance in wildlife population management. Unlike classical biometry, which involves the use of a caliper for measurements, geometric morphometry acquires, through software, a series of reference points (landmarks) from digital photos, providing a series of linear measures. A method to convert values obtained from the GeoGebra software into biometric measures is described.

View Article and Find Full Text PDF