Publications by authors named "Cesare M Terracciano"

The delivery of therapeutic long non-coding RNAs (lncRNA) to the heart by extracellular vesicles (EVs) is promising for heart repair. H19, a lncRNA acting as a major regulator of gene expression within the cardiovascular system, is alternatively spliced, but the loading of its different splice variants into EVs and their subsequent uptake by recipient cardiac cells remain elusive. Here, we dissected the cellular expression of H19 splice variants and their loading into EVs secreted by Wharton-Jelly mesenchymal stromal/stem cells (WJ-MSCs).

View Article and Find Full Text PDF

Mechanical load is one of the main determinants of cardiac structure and function. Mechanical load is studied in vitro using cardiac preparations together with loading protocols (e.g.

View Article and Find Full Text PDF

In this study, we report static and perfused models of human myocardial-microvascular interaction. In static culture, we observe distinct regulation of electrophysiology of human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in co-culture with human cardiac microvascular endothelial cells (hCMVECs) and human left ventricular fibroblasts (hLVFBs), including modification of beating rate, action potential, calcium handling, and pro-arrhythmic substrate. Within a heart-on-a-chip model, we subject this three-dimensional (3D) co-culture to microfluidic perfusion and vasculogenic growth factors to induce spontaneous assembly of perfusable myocardial microvasculature.

View Article and Find Full Text PDF

Engagement of the sarcoplasmic reticulum (SR) Ca stores for excitation-contraction (EC)-coupling is a fundamental feature of cardiac muscle cells. Extracellular matrix (ECM) proteins that form the extracellular scaffolding supporting cardiac contractile activity are thought to play an integral role in the modulation of EC-coupling. At baseline, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) show poor utilisation of SR Ca stores, leading to inefficient EC-coupling, like developing or human CMs in cardiac diseases such as heart failure.

View Article and Find Full Text PDF

Non-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension.

View Article and Find Full Text PDF

Cardiac fibroblasts regulate the development of the adult cardiomyocyte phenotype and cardiac remodeling in disease. We investigate the role that cardiac fibroblasts-secreted extracellular vesicles (EVs) have in the modulation of cardiomyocyte Ca cycling-a fundamental mechanism in cardiomyocyte function universally altered during disease. EVs collected from cultured human cardiac ventricular fibroblasts were purified by centrifugation, ultrafiltration and size-exclusion chromatography.

View Article and Find Full Text PDF

Aims: Altered mechanical load in response to injury is a main driver of myocardial interstitial fibrosis. No current in vitro model can precisely modulate mechanical load in a multicellular environment while maintaining physiological behaviour. Living myocardial slices (LMS) are a 300 μm-thick cardiac preparation with preserved physiological structure and function.

View Article and Find Full Text PDF

Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans.

View Article and Find Full Text PDF

Engineered heart tissue (EHT) strategies, by combining cells within a hydrogel matrix, may be a novel therapy for heart failure. EHTs restore cardiac function in rodent injury models, but more data are needed in clinically relevant settings. Accordingly, an upscaled EHT patch (2.

View Article and Find Full Text PDF

Aims: Takotsubo syndrome (TTS) is an acute heart failure, typically triggered by high adrenaline during physical or emotional stress. It is distinguished from myocardial infarction (MI) by a characteristic pattern of ventricular basal hypercontractility with hypokinesis of apical segments, and in the absence of culprit coronary occlusion. We aimed to understand whether recently discovered circulating biomarkers miR-16 and miR-26a, which differentiate TTS from MI at presentation, were mechanistically involved in the pathophysiology of TTS.

View Article and Find Full Text PDF

Spontaneous Ca2+ release (SCR) can cause triggered activity and initiate arrhythmias. Intrinsic transmural heterogeneities in Ca2+ handling and their propensity to disease remodeling may differentially modulate SCR throughout the left ventricular (LV) wall and cause transmural differences in arrhythmia susceptibility. Here, we aimed to dissect the effect of cardiac injury on SCR in different regions in the intact LV myocardium using cryoinjury on rat living myocardial slices (LMS).

View Article and Find Full Text PDF

The myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow.

View Article and Find Full Text PDF

Aims: Cardiac remodelling is the process by which the heart adapts to its environment. Mechanical load is a major driver of remodelling. Cardiac tissue culture has been frequently employed for in vitro studies of load-induced remodelling; however, current in vitro protocols (e.

View Article and Find Full Text PDF

Traditional in vitro bioengineering approaches whereby only individual biophysical cues are manipulated at any one time are highly inefficient, falling short when recapitulating the complexity of the cardiac environment. Multiple biophysical cues are present in the native myocardial niche and are essential during development, as well as in maintenance of adult cardiomyocyte (CM) phenotype in both health and disease. This study establishes a novel biofabrication workflow to study and manipulate hiPSC-CMs and to understand how these cells respond to a multiplexed biophysical environment, namely 3D shape and substrate stiffness, at a single cell level.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) represent a promising cell-free alternative for treatment of cardiovascular diseases. Nevertheless, the lack of standardised and reproducible isolation methods capable of recovering pure, intact EVs presents a significant obstacle. Additionally, there is significant interest in investigating the interactions of EVs with different cardiac cell types.

View Article and Find Full Text PDF

Integrative bioinformatics is an emerging field in the big data era, offering a steadily increasing number of algorithms and analysis tools. However, for researchers in experimental life sciences it is often difficult to follow and properly apply the bioinformatical methods in order to unravel the complexity and systemic effects of omics data. Here, we present an integrative bioinformatics pipeline to decipher crucial biological insights from global transcriptome profiling data to validate innovative therapeutics.

View Article and Find Full Text PDF

Determining transmural mechanical properties in the heart provides a foundation to understand physiological and pathophysiological cardiac mechanics. Although work on mechanical characterisation has begun in isolated cells and permeabilised samples, the mechanical profile of living individual cardiac layers has not been examined. Myocardial slices are 300 μm-thin sections of heart tissue with preserved cellular stoichiometry, extracellular matrix, and structural architecture.

View Article and Find Full Text PDF

The adult human heart has an exceptional ability to alter its phenotype to adapt to changes in environmental demand. This response involves metabolic, mechanical, electrical, and structural alterations, and is known as cardiac plasticity. Understanding the drivers of cardiac plasticity is essential for development of therapeutic agents.

View Article and Find Full Text PDF

Although past decades have witnessed significant reductions in mortality of heart failure together with advances in our understanding of its cellular, molecular, and whole-heart features, a lot of basic cardiac research still fails to translate into clinical practice. In this review we examine myocardial slices, a novel model in the translational arena. Myocardial slices are living ultra-thin sections of heart tissue.

View Article and Find Full Text PDF

The ability to manipulate cellular organization within soft materials has important potential in biomedicine and regenerative medicine; however, it often requires complex fabrication procedures. Here, a simple, cost-effective, and one-step approach that enables the control of cell orientation within 3D collagen hydrogels is developed to dynamically create various tailored microstructures of cardiac tissues. This is achieved by incorporating iron oxide nanoparticles into human cardiomyocytes and applying a short-term external magnetic field to orient the cells along the applied field to impart different shapes without any mechanical support.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers face challenges in testing heart failure therapies due to the absence of culture systems that replicate the complexities of human heart tissue over time.
  • The study introduces a novel culture method that keeps human and pig heart slices viable and functional for up to 6 days, utilizing specific medium conditions and electrical stimulation.
  • The culture system successfully preserves important cellular functions and structures, allowing for the evaluation of new therapies and insights into heart muscle mechanics.
View Article and Find Full Text PDF

Adult cardiac tissue undergoes a rapid process of dedifferentiation when cultured outside the body. The in vivo environment, particularly constant electromechanical stimulation, is fundamental to the regulation of cardiac structure and function. We investigated the role of electromechanical stimulation in preventing culture-induced dedifferentiation of adult cardiac tissue using rat, rabbit and human heart failure myocardial slices.

View Article and Find Full Text PDF

Myocardial slices, also known as "cardiac tissue slices" or "organotypic heart slices," are ultrathin (100-400 μm) slices of living adult ventricular myocardium prepared using a high-precision vibratome. They are a model of intermediate complexity as they retain the native multicellularity, architecture, and physiology of the heart, while their thinness ensures adequate oxygen and metabolic substrate diffusion in vitro. Myocardial slices can be produced from a variety of animal models and human biopsies, thus providing a representative human in vitro platform for translational cardiovascular research.

View Article and Find Full Text PDF

Cellular specialization and interactions with other cell types are the essence of complex multicellular life. The orchestrated function of different cell populations in the heart, in combination with a complex network of intercellular circuits of communication, is essential to maintain a healthy heart and its disruption gives rise to pathological conditions. Over the past few years, the development of new biological research tools has facilitated more accurate identification of the cardiac cell populations and their specific roles.

View Article and Find Full Text PDF