Publications by authors named "Cesar Vargas-Garcia"

Measurements of cell size dynamics have revealed phenomenological principles by which individual cells control their size across diverse organisms. One of the emerging paradigms of cell size homeostasis is the , where the cell cycle duration is established such that the cell size increase from birth to division is independent of the newborn cell size. We provide a mechanistic formulation of the considering that cell size follows any .

View Article and Find Full Text PDF

Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as the adder. This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, E.

View Article and Find Full Text PDF

Understanding how population-size homeostasis emerges from stochastic individual cell behaviors remains a challenge in biology. The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle, where a prolonged G1 phase is followed by n rounds of alternating division cycles (S/M) to produce 2 daughters. A "Commitment" sizer in mid-G1 phase ensures sufficient cell growth before completing the cell cycle.

View Article and Find Full Text PDF

Under ideal conditions, cells divide after adding a fixed cell size, a strategy known as the . This concept applies to various microbes and is often explained as the division that occurs after a certain number of stages, associated with the accumulation of precursor proteins at a rate proportional to cell size. However, under poor media conditions, cells exhibit a different size regulation.

View Article and Find Full Text PDF

Inoculation with phosphate-solubilizing bacteria (PSB) and the application of phosphorus (P) sources can improve soil P availability, enhancing the sustainability and efficiency of agricultural systems. The implementation of this technology in perennial grasses, such as Kikuyu grass, for cattle feed in soils with high P retention, such as Andisols, has been little explored. The objective of this study was to evaluate the productive response of Kikuyu grass and soil P dynamics to BSF inoculation with different P sources.

View Article and Find Full Text PDF

Eukaryotic cells tightly control their size, but the relevant aspect of size is unknown in most cases. Fission yeast divide at a threshold cell surface area (SA) due, in part, to the protein kinase Cdr2. We find that fission yeast cells only divide by SA under a size threshold.

View Article and Find Full Text PDF
Article Synopsis
  • There is a growing demand for simulation tools to understand cell size regulation, which is crucial for studying cell proliferation and gene expression.
  • This article introduces a Python-based library that simulates the random dynamics of bacterial cell size, supporting various parameters such as initial cell size, growth rate, and division strategies.
  • The library helps in analyzing the relationship between cell size dynamics and gene expression, notably how fluctuations in division timing and growth rates affect protein levels, making it easier to incorporate cell size variations into complex gene expression models.
View Article and Find Full Text PDF

Fission yeast cells prevent mitotic entry until a threshold cell surface area is reached. The protein kinase Cdr2 contributes to this size control system by forming multiprotein nodes that inhibit Wee1 at the medial cell cortex. Cdr2 node anchoring at the cell cortex is not fully understood.

View Article and Find Full Text PDF

Bacterial division is an inherently stochastic process with effects on fluctuations of protein concentration and phenotype variability. Current modeling tools for the stochastic short-term cell-size dynamics are scarce and mainly phenomenological. Here we present a general theoretical approach based on the Chapman-Kolmogorov equation incorporating continuous growth and division events as jump processes.

View Article and Find Full Text PDF

The ruminal microbial community is an important element in health, nutrition, livestock productivity, and climate impact. Despite the historic and current efforts to characterize this microbial diversity, many of its members remain unidentified, making it challenging to associate microbial groups with functions. Here we present a low-cost methodology for rumen sample treatment that separates the microbial community based on cell size, allowing for the identification of subtle compositional changes.

View Article and Find Full Text PDF

How organisms maintain cell size homeostasis is a long-standing problem that remains unresolved, especially in multicellular organisms. Recent experiments in diverse animal cell types demonstrate that within a cell population, cellular proliferation is low for small and large cells, but high at intermediate sizes. Here we use mathematical models to explore size-control strategies that drive such a non-monotonic profile resulting in the proliferation capacity being maximized at a target cell size.

View Article and Find Full Text PDF

Classically, gene expression is modeled as a chemical process with reaction rates dependent on the concentration of the reactants (typically, DNA loci, plasmids, RNA, enzymes, etc). Other variables like cell size are in general ignored. Size dynamics can become an important variable due to the low number of many of these reactants, imperfectly symmetric cell partitioning and molecule segregation.

View Article and Find Full Text PDF

Recent experiments support the adder model for E. coli division control. This model posits that bacteria grow, on average, a fixed size before division.

View Article and Find Full Text PDF

Background: How small, fast-growing bacteria ensure tight cell-size distributions remains elusive. High-throughput measurement techniques have propelled efforts to build modeling tools that help to shed light on the relationships between cell size, growth and cycle progression. Most proposed models describe cell division as a discrete map between size at birth and size at division with stochastic fluctuations assumed.

View Article and Find Full Text PDF

Clinical trials are necessary in order to develop treatments for diseases; however, they can often be costly, time consuming, and demanding to the patients. This paper summarizes several common methods used for optimal design that can be used to address these issues. In addition, we introduce a novel method for optimizing experiment designs applied to HIV 2-LTR clinical trials.

View Article and Find Full Text PDF

Transmission of HIV is known to occur by two mechanisms in vivo: the free virus pathway, where viral particles bud off an infected cell before attaching to an uninfected cell, and the cell-cell pathway, where infected cells form virological synapses through close contact with an uninfected cell. It has also been shown that HIV replication includes a positive feedback loop controlled by the viral protein Tat, which may act as a stochastic switch in determining whether an infected cell enters latency. In this paper, we introduce a simple mathematical model of HIV replication containing both the free virus and cell-cell pathways.

View Article and Find Full Text PDF

Growth of a cell and its subsequent division into daughters is a fundamental aspect of all cellular living systems. During these processes, how do individual cells correct size aberrations so that they do not grow abnormally large or small? How do cells ensure that the concentration of essential gene products are maintained at desired levels, in spite of dynamic/stochastic changes in cell size during growth and division? Both these questions have fascinated researchers for over a century. We review how advances in singe-cell technologies and measurements are providing unique insights into these questions across organisms from prokaryotes to human cells.

View Article and Find Full Text PDF

Time series measurements of circular viral episome (2-LTR) concentrations enable indirect quantification of persistent low-level Human Immunodeficiency Virus (HIV) replication in patients on Integrase-Inhibitor intensified Combined Antiretroviral Therapy (cART). In order to determine the magnitude of these low level infection events, blood has to be drawn from a patients at a frequency and volume that is strictly regulated by the Institutional Review Board (IRB). Once the blood is drawn, the 2-LTR concentration is determined by quantifying the amount of HIV DNA present in the sample via a PCR (Polymerase Chain Reaction) assay.

View Article and Find Full Text PDF

In the stochastic description of biochemical reaction systems, the time evolution of statistical moments for species population counts is described by a linear dynamical system. However, except for some ideal cases (such as zero- and first-order reaction kinetics), the moment dynamics is underdetermined as lower-order moments depend upon higher-order moments. Here, we propose a novel method to find exact lower and upper bounds on stationary moments for a given arbitrary system of biochemical reactions.

View Article and Find Full Text PDF

Therapies that target signalling molecules that are mutated in cancers can often have substantial short-term effects, but the emergence of resistant cancer cells is a major barrier to full cures. Resistance can result from secondary mutations, but in other cases there is no clear genetic cause, raising the possibility of non-genetic rare cell variability. Here we show that human melanoma cells can display profound transcriptional variability at the single-cell level that predicts which cells will ultimately resist drug treatment.

View Article and Find Full Text PDF

At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth).

View Article and Find Full Text PDF

Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant.

View Article and Find Full Text PDF

How exponentially growing cells maintain size homeostasis is an important fundamental problem. Recent single-cell studies in prokaryotes have uncovered the adder principle, where cells add a fixed size (volume) from birth to division, irrespective of their size at birth. To mechanistically explain the adder principle, we consider a timekeeper protein that begins to get stochastically expressed after cell birth at a rate proportional to the volume.

View Article and Find Full Text PDF

Inside individual cells, stochastic expression drives random fluctuations in gene product copy numbers, which corrupts functioning of both natural and synthetic genetic circuits. Dynamic models of genetic circuits are formulated stochastically using the chemical master equation framework. Since obtaining probability distributions can be computationally expensive in these models, noise is typically investigated through lower-order statistical moments (mean, variance, correlation, skewness, etc.

View Article and Find Full Text PDF