The discovery and optimisation of reaction conditions leading to the reduction of amides, a fundamental large-scale industrial reaction, is achieved using a machine learning (ML) platform and a platinum catalyst. The optimisation leads to the discovery of a new platinum-based catalytic system that displays unexpectedly high performance. The approach enables rapid and high conversions at ppm-level catalyst loadings.
View Article and Find Full Text PDFValuing diversity leads to scientific excellence, the progress of science and most importantly, it is simply the right thing to do. We can value diversity not only in words, but also in actions.
View Article and Find Full Text PDFFive new complexes [RuCl(SIMes)(Ind)(O-pXCH)] bearing different para-substituted triphenylphosphites (X = H, OCH, CF, Cl, SF and CN) were synthesised and used to study the effect of the electronic properties of the phosphite on olefin metathesis activity. Investigations of the physical properties of the new ligands and complexes were performed using physicochemical and DFT calculations. The catalytic activity of the complexes was benchmarked in challenging ring closing metathesis transformations featuring the formation of tetra-substituted double bonds.
View Article and Find Full Text PDFWhile the fundamental series of [2+2]cycloadditions and retro[2+2]cycloadditions that make up the pathways of ruthenium-catalysed metathesis reactions is well-established, the exploration of mechanistic aspects of alkene metathesis continues. In this Feature Article, modern mechanistic studies of the alkene metathesis reaction, catalysed by well-defined ruthenium complexes, are discussed. Broadly, these concern the processes of pre-catalyst initiation, propagation and decomposition, which all have a considerable impact on the overall efficiency of metathesis reactions.
View Article and Find Full Text PDFCyclotetra- and cyclohexa-decane ring systems were prepared with CF2 groups spaced 1,4- and 1,6- for tetradecanes together with 1,5- and 1,6- for hexadecanes. These alicyclic systems were assembled by ring closing metathesis reactions of long terminal diolefins. Ring cyclisation by RCM was promoted by the introduction of the dithiane motif, using a sulfur compatible metathesis catalyst.
View Article and Find Full Text PDFA series of seventeen hitherto unknown ANP analogs bearing the (E)-but-2-enyl aliphatic side chain and modified heterocyclic base such as cytosine and 5-fluorocytosine, 2-pyrazinecarboxamide, 1,2,4-triazole-3-carboxamide or 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as key synthetic step. All novel compounds were evaluated for their antiviral activities against a large number of DNA and RNA viruses including herpes simplex virus type 1 and 2, varicella zoster virus, feline herpes virus, human cytomegalovirus, hepatitis C virus (HCV), HIV-1 and HIV-2. Among these molecules, only compound 31 showed activity against human cytomegalovirus in HEL cell cultures with at EC50 of ∼10 μM.
View Article and Find Full Text PDFThe gem-difluoromethylene (CF2) group significantly accelerates ring-closing metathesis of 1,8-nonadienes relative to the methylene (CH2) group demonstrating similar rate accelerations to that observed for the classic Thorpe-Ingold substituents, diester malonates and ketals.
View Article and Find Full Text PDFDensity functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes affect the metal environment and therefore the related catalytic behaviour. Bearing in mind that there is a significant structural difference between both ligands in different olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance.
View Article and Find Full Text PDFThe synthesis and characterization of two new ruthenium indenylidene complexes [RuCl(2)(SIPr)(Py)(Ind)] 6 and [RuCl(2)(SIPr)(3-BrPy)(Ind)] 7 featuring the sterically demanding N-heterocyclic carbene 1,3-bis(2,6-di isopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr) are reported. Remarkable activity was observed with these complexes in ring closing, enyne, and cross metathesis of olefins at low catalyst loadings. The performance of SIPr-bearing complexes 6 and 7 as well as [RuCl(2)(SIPr)(PCy(3))(Ind)] 5 in ring opening metathesis polymerization is also disclosed.
View Article and Find Full Text PDFAn efficient synthetic protocol involving reactions between the free carbene and [RuCl(2)(PPh(3))(2)(Ind)] followed by addition of pyridine leads to the isolation of olefin metathesis active [RuCl(2)(L)(Py)(Ind)] (L = SIMes and SIPr) complexes. This novel approach circumvents the use of costly tricyclohexylphosphine.
View Article and Find Full Text PDFThe steric and electronic influence of backbone substitution in IMes-based (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) N-heterocyclic carbenes (NHC) was probed by synthesizing the [RhCl(CO)₂(NHC)] series of complexes to quantify experimentally the Tolman electronic parameter (electronic) and the percent buried volume (%V(bur), steric) parameters. The corresponding ruthenium-indenylidene complexes were also synthesized and tested in benchmark metathesis transformations to establish possible correlations between reactivity and NHC electronic and steric parameters.
View Article and Find Full Text PDFThe aims of this contribution are to present a straightforward synthesis of 2(nd) generation Hoveyda-type olefin metathesis catalysts bearing bromo and iodo ligands, and to disclose the subtle influence of the different anionic co-ligands on the catalytic performance of the complexes in ring opening metathesis polymerisation, ring closing metathesis, enyne cycloisomerisation and cross metathesis reactions.
View Article and Find Full Text PDFThe aim of the present study is to develop readily available and stable pre-catalysts that could be easily prepared on large scale from simple starting materials. Based on the hypothesis that substitution of classical PCy(3) with phosphanes of varying electron-donating properties could be a straightforward manner to improve catalytic activity, a methodical study dealing with the effect of phosphane fine-tuning in ruthenium-indenylidene catalysts was performed. Challenged to establish how the electronic properties of para-substituted phosphane ligands translate into catalyst activity, the versatile behaviour of these new ruthenium-indenylidene complexes was investigated for a number of metathesis reactions.
View Article and Find Full Text PDF