Publications by authors named "Cesar Torres-Huitzil"

A practical solution to the problems caused by the water, air, and soil pollution produced by the large volumes of waste is recycling. Plastic and glass bottle recycling is a practical solution but sometimes unfeasible in underdeveloped countries. In this paper, we propose a high-performance real-time hardware architecture for bottle classification, that process input image bottles to generate a bottle color as output.

View Article and Find Full Text PDF

The increased availability of GPS-enabled devices makes possible to collect location data for mining purposes and to develop mobility-based services (MBS). For most of the MBSs, determining interesting locations and frequent Points of Interest (POIs) is of paramount importance to study the semantic of places visited by an individual and the mobility patterns as a spatio-temporal phenomenon. In this paper, we propose a novel approach that uses mobility-based services for on-device and individual-centered mobility understanding.

View Article and Find Full Text PDF

Mobile Edge Computing (MEC) relates to the deployment of decision-making processes at the network edge or mobile devices rather than in a centralized network entity like the cloud. This paradigm shift is acknowledged as one key pillar to enable autonomous operation and self-awareness in mobile devices in IoT. Under this paradigm, we focus on mobility-based services (MBSs), where mobile devices are expected to perform energy-efficient GPS data acquisition while also providing location accuracy.

View Article and Find Full Text PDF

Indoor positioning is a recent technology that has gained interest in industry and academia thanks to the promising results of locating objects, people or robots accurately in indoor environments. One of the utilized technologies is based on algorithms that process the Received Signal Strength Indicator (RSSI) in order to infer location information without previous knowledge of the distribution of the Access Points (APs) in the area of interest. This paper presents the design and implementation of an indoor positioning mobile application, which allows users to capture and build their own RSSI maps by off-line training of a set of selected classifiers and using the models generated to obtain the current indoor location of the target device.

View Article and Find Full Text PDF

The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection.

View Article and Find Full Text PDF

The disruptive innovation of smartphone technology has enabled the development of mobile sensing applications leveraged on specialized sensors embedded in the device. These novel mobile phone applications rely on advanced sensor information processes, which mainly involve raw data acquisition, feature extraction, data interpretation and transmission. However, the continuous accessing of sensing resources to acquire sensor data in smartphones is still very expensive in terms of energy, particularly due to the periodic use of power-intensive sensors, such as the Global Positioning System (GPS) receiver.

View Article and Find Full Text PDF

Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with a k × k kernel requires of k(2) - 1 comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel size k. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware.

View Article and Find Full Text PDF

Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs).

View Article and Find Full Text PDF

This paper presents a numerical analysis of the role of asymptotic dynamics in the design of hardware-based implementations of the generalised integrate-and-fire (gIF) neuron models. These proposed implementations are based on extensions of the discrete-time spiking neuron model, which was introduced by Soula et al., and have been implemented on Field Programmable Gate Array (FPGA) devices using fixed-point arithmetic.

View Article and Find Full Text PDF

Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented.

View Article and Find Full Text PDF