Publications by authors named "Cesar Quiroz"

Article Synopsis
  • (R,S)-methadone consists of two enantiomers, (R)-MTD and (S)-MTD, both of which interact with µ-opioid receptors (MORs) to provide pain relief but have different effects on the brain's reward system.
  • (S)-MTD is being researched as an antidepressant due to its unique properties; it does not increase dopamine levels or cause locomotor stimulation like (R)-MTD, and it weakly reinforces reward pathways.
  • Additionally, (S)-MTD acts as a partial agonist at MORs and specifically inhibits the MOR-GalR heteromer, which may lower the risk of dependence compared to traditional opioids.
View Article and Find Full Text PDF
Article Synopsis
  • (R,S)-methadone (MTD) is a combination of two enantiomers, (R)-MTD and (S)-MTD, used to treat opioid use disorder (OUD) and pain, with (R)-MTD being the effective treatment for OUD.
  • Research showed that (S)-MTD, while developing as an antidepressant, does not act on N-methyl-D-aspartate receptors (NMDARs) as previously thought but instead shows similar efficacy to (R)-MTD at mu-opioid receptors (MORs).
  • (S)-MTD has a lower potential for abuse, does not self-administer, and uniquely interacts with receptors, providing insights into its distinct
View Article and Find Full Text PDF

Adenosine plays a very significant role in modulating striatal glutamatergic and dopaminergic neurotransmission. In the present essay we first review the extensive evidence that indicates this modulation is mediated by adenosine A and A receptors (ARs and ARs) differentially expressed by the components of the striatal microcircuit that include cortico-striatal glutamatergic and mesencephalic dopaminergic terminals, and the cholinergic interneuron. This microcircuit mediates the ability of striatal glutamate release to locally promote dopamine release through the intermediate activation of cholinergic interneurons.

View Article and Find Full Text PDF
Article Synopsis
  • The dopamine D receptor (DR) is the least understood dopamine receptor subtype, particularly regarding common genetic variations that affect its function.
  • These variations, specifically those with 4 or 7 proline repeats, have been linked to neuropsychiatric disorders like ADHD and substance use disorders, highlighting individual differences in impulse control.
  • Recent research suggests that DR's role in modulating the brain's dopamine and norepinephrine systems could make it a potential therapeutic target for ADHD and other impulse-control-related conditions.
View Article and Find Full Text PDF

Brain iron deficiency (BID) constitutes a primary pathophysiological mechanism in restless legs syndrome (RLS). BID in rodents has been widely used as an animal model of RLS, since it recapitulates key neurochemical changes reported in RLS patients and shows an RLS-like behavioral phenotype. Previous studies with the BID-rodent model of RLS demonstrated increased sensitivity of cortical pyramidal cells to release glutamate from their striatal nerve terminals driving striatal circuits, a correlative finding of the cortical motor hyperexcitability of RLS patients.

View Article and Find Full Text PDF
Article Synopsis
  • Ghrelin receptors (GHS-R1a and GHS-R1b) interact in a complex way, with GHS-R1b not directly binding ghrelin but influencing GHS-R1a’s function and pharmacological properties.
  • Research indicates that GHS-R1a specifically forms oligomers with D5R in the ventral tegmental area (VTA) of the brain, which shows different signaling characteristics than oligomers with D1R, suggesting unique roles for these complexes.
  • Experimental evidence highlights that GHS-R1a:GHS-R1b:D1R oligomers are crucial for mediating the effects of ghrelin on dopaminergic signaling and motivated behavior in rodents, emphasizing the
View Article and Find Full Text PDF

Akathisia is an urgent need to move that is associated with treatment with dopamine receptor blocking agents (DRBAs) and with restless legs syndrome (RLS). The pathogenetic mechanism of akathisia has not been resolved. This article proposes that it involves an increased presynaptic dopaminergic transmission in the ventral striatum and concomitant strong activation of postsynaptic dopamine D receptors, which form complexes (heteromers) with dopamine D and adenosine A receptors.

View Article and Find Full Text PDF

Dopamine (DA) signals in the striatum are critical for a variety of vital processes, including motivation, motor learning, and reinforcement learning. Striatal DA signals can be evoked by direct activation of inputs from midbrain DA neurons (DANs) as well as cortical and thalamic inputs to the striatum. In this study, we show that optogenetic stimulation of prelimbic (PrL) and infralimbic (IL) cortical afferents to the striatum triggers an increase in extracellular DA concentration, which coincides with elevation of striatal acetylcholine (ACh) levels.

View Article and Find Full Text PDF

Our working hypothesis is that a hypoadenosinergic state is a main pathogenetic factor that determines the sensory-motor symptoms and hyperarousal of restless legs syndrome (RLS). We have recently demonstrated that brain iron deficiency (BID) in rodents, a well-accepted animal model of RLS, is associated with a generalized downregulation of adenosine A receptors (A1R) in the brain and with hypersensitivity of corticostriatal glutamatergic terminals. Here, we first review the experimental evidence for a pivotal role of adenosine and A1R in the control of striatal glutamatergic transmission and the rationale for targeting putative downregulated striatal A1R in RLS patients, which is supported by recent clinical results obtained with dipyridamole, an inhibitor of the nucleoside transporters ENT1 and ENT2.

View Article and Find Full Text PDF

Several studies found in vitro evidence for heteromerization of dopamine D receptors (D1R) and D receptors (D3R), and it has been postulated that functional D1R-D3R heteromers that are normally present in the ventral striatum mediate synergistic locomotor-activating effects of D1R and D3R agonists in rodents. Based also on results obtained in vitro, with mammalian transfected cells, it has been hypothesized that those behavioral effects depend on a D1R-D3R heteromer-mediated G protein-independent signaling. Here, we demonstrate the presence on D1R-D3R heteromers in the mouse ventral striatum by using a synthetic peptide that selectively destabilizes D1R-D3R heteromers.

View Article and Find Full Text PDF

Identifying non-addictive opioid medications is a high priority in medical sciences, but μ-opioid receptors mediate both the analgesic and addictive effects of opioids. We found a significant pharmacodynamic difference between morphine and methadone that is determined entirely by heteromerization of μ-opioid receptors with galanin Gal1 receptors, rendering a profound decrease in the potency of methadone. This was explained by methadone's weaker proficiency to activate the dopaminergic system as compared to morphine and predicted a dissociation of therapeutic versus euphoric effects of methadone, which was corroborated by a significantly lower incidence of self-report of "high" in methadone-maintained patients.

View Article and Find Full Text PDF

The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes.

View Article and Find Full Text PDF

The symptomatology of Restless Legs Syndrome (RLS) includes periodic leg movements during sleep (PLMS), dysesthesias, and hyperarousal. Alterations in the dopaminergic system, a presynaptic hyperdopaminergic state, seem to be involved in PLMS, while alterations in glutamatergic neurotransmission, a presynaptic hyperglutamatergic state, seem to be involved in hyperarousal and also PLMS. Brain iron deficiency (BID) is well-recognized as a main initial pathophysiological mechanism of RLS.

View Article and Find Full Text PDF

Objective: The first aim was to demonstrate a previously hypothesized increased sensitivity of corticostriatal glutamatergic terminals in the rodent with brain iron deficiency (BID), a pathogenetic model of restless legs syndrome (RLS). The second aim was to determine whether these putative hypersensitive terminals could constitute a significant target for drugs effective in RLS, including dopamine agonists (pramipexole and ropinirole) and α δ ligands (gabapentin).

Methods: A recently introduced in vivo optogenetic-microdialysis approach was used, which allows the measurement of the extracellular concentration of glutamate upon local light-induced stimulation of corticostriatal glutamatergic terminals.

View Article and Find Full Text PDF

Polymorphic variants of the dopamine D receptor gene () have been repeatedly associated with numerous neuropsychiatric disorders. Yet, the functional role of the D receptor and the functional differences of the products of polymorphic variants remained enigmatic. Immunohistochemical and optogenetic-microdialysis experiments were performed in knock-in mice expressing a D receptor with the long intracellular domain of a human polymorphic variant associated with attention deficit hyperactivity disorder (ADHD).

View Article and Find Full Text PDF

Unlabelled: The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive.

View Article and Find Full Text PDF

Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances.

View Article and Find Full Text PDF

Unlabelled: A scalable, hysteresis-free and planar architecture perovskite solar cell is presented, employing a flame spray synthesized low-temperature processed NiO (LT-NiO) as hole-transporting layer yielding efficiencies close to 18%. Importantly, it is found that LT-NiO boosts the limits of open-circuit voltages toward an impressive non-radiative voltage loss of 0.226 V only, whereas

Pedot: PSS suffers from significant large non-radiative recombination losses.

View Article and Find Full Text PDF

It is generally assumed that infralimbic cortex (ILC) and prelimbic cortex, two adjacent areas of the medial prefrontal cortex (mPFC) in rodents, provide selective excitatory glutamatergic inputs to the nucleus accumbens (NAc) shell and core, respectively. It is also generally believed that mPFC influences the extracellular levels of dopamine in the NAc primarily by an excitatory collateral to the ventral tegmental area (VTA). In the present study, we first established the existence of a selective functional connection between ILC and the posteromedial portions of the VTA (pmVTA) and the mNAc shell (pmNAc shell), by measuring striatal neuronal activation (immunohistochemical analysis of ERK1/2 phosphorylation) and glutamate release (in vivo microdialysis) upon ILC electrical stimulation.

View Article and Find Full Text PDF

Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release.

View Article and Find Full Text PDF

The immediate early gene (IEG) Arc is known to play an important role in synaptic plasticity; its protein is locally translated in the dendrites where it has been involved in several types of plasticity mechanisms. Because of its tight coupling with neuronal activity, Arc has been widely used as a tool to tag behaviorally activated networks. However, studies examining the modulation of Arc expression during and after learning have yielded somewhat contradictory results.

View Article and Find Full Text PDF

Huntington disease (HD) is a neurodegenerative disorder involving preferential loss of striatal GABAergic medium spiny neurons. Adenosine A(2A) receptors (A(2A)Rs) are present in the striatum at both presynaptic and post-synaptic levels. Blocking pre-synaptic A(2A)Rs, localized in glutamatergic terminals that contact striatal GABAergic dynorphinergic neurons, reduces glutamate release, which could be beneficial in HD.

View Article and Find Full Text PDF

Adenosine A(2A) receptors (A(2A)Rs) are highly concentrated in the striatum. Two pharmacological different functional populations of A(2A)Rs have been recently described based on their different affinities for the A(2A)R antagonist SCH-442416. This compound has high affinity for A(2A)Rs not forming heteromers or forming heteromers with adenosine A(1) receptors (A(1)Rs) while showing very low affinity for A(2A)Rs forming heteromers with dopamine D(2) receptors (D(2)Rs).

View Article and Find Full Text PDF

A very significant density of adenosine A(2A) receptors (A(2A)Rs) is present in the striatum, where they are preferentially localized postsynaptically in striatopallidal medium spiny neurons (MSNs). In this localization A(2A)Rs establish reciprocal antagonistic interactions with dopamine D(2) receptors (D(2)Rs). In one type of interaction, A(2A)R and D(2)R are forming heteromers and, by means of an allosteric interaction, A(2A)R counteracts D(2)R-mediated inhibitory modulation of the effects of NMDA receptor stimulation in the striatopallidal neuron.

View Article and Find Full Text PDF