Publications by authors named "Cesar Plaza"

Earth harbours an extraordinary plant phenotypic diversity that is at risk from ongoing global changes. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change-shape the trait covariation that underlies plant phenotypic diversity. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands.

View Article and Find Full Text PDF
Article Synopsis
  • Plant-soil biodiversity interactions are crucial for terrestrial ecosystems, yet it's unclear which specific topsoil microbial and small invertebrate organisms consistently associate with land plants.
  • A field survey of 150 land plant species across 124 locations revealed that these plants only shared less than 1% of the soil organisms, mostly generalist decomposers and phagotrophs, with their presence linked to important functional genes.
  • Environmental factors like aridity, soil pH, and carbon content can significantly disrupt the relationships between land plants and soil organisms, potentially impacting soil ecosystem processes in the face of climate change.
View Article and Find Full Text PDF

Climate and time are among the most important factors driving soil organic carbon (SOC) stability and accrual in mineral soils; however, their relative importance on SOC dynamics is still unclear. Therefore, understanding how these factors covary over a range of soil developmental stages is crucial to improve our knowledge of climate change impact on SOC accumulation and persistence. Two chronosequences located along a climate gradient were investigated to determine the main interactions among time (age) and climate (precipitation and temperature) on SOC stability and stock with depth.

View Article and Find Full Text PDF

Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown.

View Article and Find Full Text PDF

The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown.

View Article and Find Full Text PDF

Unlabelled: Accumulating evidence suggests that warming associated with climate change is decreasing the total amount of soil organic carbon (SOC) in drylands, although scientific research has not given enough emphasis to particulate (POC) and mineral-associated organic carbon (MAOC) pools. Biocrusts are a major biotic feature of drylands and have large impacts on the C cycle, yet it is largely unknown whether they modulate the responses of POC and MAOC to climate change. Here, we assessed the effects of simulated climate change (control, reduced rainfall (RE), warming (WA), and RE + WA) and initial biocrust cover (low (< 20%) versus high (> 50%)) on the mineral protection of soil C and soil organic matter quality in a dryland ecosystem in central Spain for 9 years.

View Article and Find Full Text PDF

The sustainability of Mediterranean croplands is threatened by climate warming and rainfall reduction. The use of biochar as an amendment represents a tool to store organic carbon (C) in soil. The vulnerability of soil organic C (SOC) to the joint effects of climate change and biochar application needs to be better understood by investigating its main pools.

View Article and Find Full Text PDF

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.

View Article and Find Full Text PDF

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation.

View Article and Find Full Text PDF

Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide.

View Article and Find Full Text PDF
Article Synopsis
  • * Analyzing over 1300 soil samples, researchers found that hot, arid regions in developing countries have the lowest levels of essential micronutrients like Cu, Fe, and Zn.
  • * The study indicates that rising temperatures could lead to sudden drops in these micronutrients, especially if the temperature exceeds 12-14°C, affecting ecosystem function and food production in vulnerable areas.
View Article and Find Full Text PDF

Soils are the foundation of all terrestrial ecosystems. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services.

View Article and Find Full Text PDF

Biochar aging may affect the interactions of biochar with water and thus its performance as soil amendment; yet the specific mechanisms underlying these effects are poorly understood. By means of FTIR, N adsorption, Hg intrusion porosimetry, thermogravimetric analysis, C solid state nuclear magnetic resonance (NMR) and H NMR relaxometry, we investigated changes in the chemistry and structure of biochar as well as its interaction with water after biochar aging, both physical (simulated by ball-milling) and biochemical (simulated by co-composting). Three different porosities of biochar were examined: <5 nm, 1 μm and 10 μm diameter sizes.

View Article and Find Full Text PDF

The rapid spread of invasive Pampas grass (PG) is having not only ecosystems impact, but also significant economic and social effects. The tonnes of bulky waste from the plant disposal require proper treatment to avoid seed dispersal, greenhouse gas emissions and landscape damage. In the pursuit of zero-waste management, hydrothermal treatment (HT) appears as a challenging alternative.

View Article and Find Full Text PDF

The structure and function of the soil microbiome of urban greenspaces remain largely undetermined. We conducted a global field survey in urban greenspaces and neighboring natural ecosystems across 56 cities from six continents, and found that urban soils are important hotspots for soil bacterial, protist and functional gene diversity, but support highly homogenized microbial communities worldwide. Urban greenspaces had a greater proportion of fast-growing bacteria, algae, amoebae, and fungal pathogens, but a lower proportion of ectomycorrhizal fungi than natural ecosystems.

View Article and Find Full Text PDF

Background: Nowadays a significant amount of land contaminated with toxic elements is being used for agriculture, posing a serious risk of crop contamination and toxicity. Several methodologies are being used to remediate soil contamination, including the use of amendments such as biochar. This work evaluated the effects of biochar combined with different fertirrigations (water, a conventional fertilizer solution, or a fertilizer solution with a commercial biostimulant derived from leonardite) on the availability of toxic elements and nutrients for pepper cultivated in a soil contaminated with As, Cd, Pb, and Zn.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how environmental factors affect the structure and function of archaeal communities in soil, using advanced techniques like 16S rRNA gene sequencing and metaproteomics.
  • Researchers found that Nitrosophaerales and Thermoplasmata were the most prevalent archaeal groups across various climates and vegetation types, representing around 2.3% of microbial proteins in the soil.
  • The results suggest a link between increasing aridity and higher proportions of Nitrosophaerales genes and archaeal proteins, indicating that global climate changes could impact these important microorganisms.
View Article and Find Full Text PDF

The biogeochemical cycling of multiple soil elements is fundamental for life on Earth. Here, we conducted a global field survey across 16 chronosequences from contrasting biomes with soil ages ranging from centuries to millions of years. For this, we collected and analysed 435 topsoil samples (0-10 cm) from 87 locations.

View Article and Find Full Text PDF

The importance of soil age as an ecosystem driver across biomes remains largely unresolved. By combining a cross-biome global field survey, including data for 32 soil, plant, and microbial properties in 16 soil chronosequences, with a global meta-analysis, we show that soil age is a significant ecosystem driver, but only accounts for a relatively small proportion of the cross-biome variation in multiple ecosystem properties. Parent material, climate, vegetation and topography predict, collectively, 24 times more variation in ecosystem properties than soil age alone.

View Article and Find Full Text PDF

The Fe(II)-catalyzed transformation of ferrihydrite into highly crystalline forms may represent an important pathway for soil organic matter (SOM) destabilization under moderately reducing conditions. However, the link between redox-driven changes in soil Fe mineral composition and crystallinity and SOM chemical properties in the field remains elusive. We evaluated abiotic Fe(II)-catalyzed mineralogical transformation of Fe (oxyhydr)oxides in bulk soils and two particle-size SOM fractions, namely the fine silt plus clay (<20 μm, FSi + Cl) and fine sand (50-200 μm, FSa) fractions of an agricultural soil unamended or amended with biochar, compost, or the combination of both.

View Article and Find Full Text PDF

The availability of metallic nutrients in dryland soils, many of which are essential for the metabolism of soil organisms and vascular plants, may be altered due to climate change-driven increases in aridity. Biocrusts, soil surface communities dominated by lichens, bryophytes and cyanobacteria, are ecosystem engineers known to exert critical functions in dryland ecosystems. However, their role in regulating metallic nutrient availability under climate change is uncertain.

View Article and Find Full Text PDF

Hydrothermal carbonization makes feasible the integral and profitable recovery of industrial apple waste within a zero-residue bio-economy. 82-96% of the energy and 80-93% of the C in the apple bagasse are retained in the solids generated by hydrothermal treatment at 180 and 230 °C for 2 and 4 h. Such processes stabilize the apple waste and lead to CO neutral solid fuels with calorific value close to 30 MJ/kg.

View Article and Find Full Text PDF

The role and distribution of iron (Fe) species in physical soil fractions have received remarkably little attention in field-scale systems. Here, we identify and quantify the Fe phases into two fractions (fine sand, FSa, and fine silt and clay, FSi + Cl), isolated from an agricultural soil unamended and amended with different organic materials, by Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The linear combination fitting and wavelet transform of EXAFS data revealed noticeable differences between unamended FSa and FSi + Cl fractions.

View Article and Find Full Text PDF