A series of new benzimidazole derivatives were synthesized by the solid-state condensation and direct sublimation (SSC-DS) method and their physical properties were investigated. The reaction yields and product stability were significantly affected by the identity of the diamine and anhydride substituents. On the other hand, the substituents of the benzimidazole ring allowed fine tuning of the emission maxima, fluorescence quantum yields, and redox potentials.
View Article and Find Full Text PDFPolycyclic benzimidazole derivatives, an important class of compounds in organic electronics and photovoltaics, were prepared using a solvent-free "green" process based on heating carboxylic acid anhydrides and arylene diamines in the presence of zinc acetate in the solid state. Products were isolated and purified directly by train sublimation of the crude reaction mixtures. The reaction conditions were optimized using various carboxylic acid anhydrides.
View Article and Find Full Text PDFCombinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6.
View Article and Find Full Text PDFThis paper concerns the development of water-compatible fluorescent imaging probes with tunable photonic properties that can be excited at a single wavelength. Bichromophoric cassettes 1a-1c consisting of a BODIPY donor and a cyanine acceptor were prepared using a simple synthetic route, and their photophysical properties were investigated. Upon excitation of the BODIPY moiety at 488 nm the excitation energy is transferred through an acetylene bridge to the cyanine dye acceptor, which emits light at approximately 600, 700, and 800 nm, i.
View Article and Find Full Text PDFBlue-emitting heteroleptic aluminum(III) bis(2-methyl-8-quinolinolate)phenolate complexes were synthesized. A tunable, blue-to-green emission is achieved by attaching electron-withdrawing modulators to the emisssive quinaldinate ligand. The electronic nature of modulator substituents attached to the position of the highest HOMO (highest occupied molecular orbital) density is used to modulate ligand HOMO levels to achieve effective emission tuning to obtain blue-emitting materials.
View Article and Find Full Text PDFDonor-bridge-acceptor triads consisting of the Alq3 complex, oligofluorene bridge, and PtII tetraphenylporphyrin (PtTPP) were synthesized. The triads were designed to study the energy level/distance-dependence in energy transfer both in a solution and in solid state. The materials show effective singlet transfer from the Alq3-fluorene fluorophore to the porphyrin, while the triplet energy transfer, owing to the shorter delocalization of triplet excitons, appears to take place via a triplet energy cascade.
View Article and Find Full Text PDF