Background: Gold nanoparticles can generate heat upon exposure to radiation due to their plasmonic properties, which depend on particle size and shape. This enables precise control over the release of active substances from polymeric pharmaceutical formulations, minimizing side effects and premature release. The technology of 3D printing, especially vat photopolymerization, is valuable for integrating nanoparticles into complex formulations.
View Article and Find Full Text PDFNew adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC).
View Article and Find Full Text PDFA new precursor (Ag/CS/PNIPA) arranged as a nanogel (nanoreactor) is obtained from the aqueous mixture of Ag, chitosan (CS) and poly(N-isopropylacrylamide) (PNIPA). A model synthetic system based on the thermally induced aqueous silver ions-CS reaction to form silver nanoparticles (AgNP) is used as a starting point to assess the PNIPA role as a thermo-sensitive additive of synthesis in a low content for the production of size-controlled AgNP. As expected, the PNIPA phase transition produced by the temperature increase leads to chitosan nanogel contraction, lowering the diffusion of ionic species.
View Article and Find Full Text PDFA chemical actuator was developed taking advantage of the internal microstructure of a plant stem. Stem xylems of Cucurbita moschata were chemically modified with a pH-responsive polymer to obtain an intelligent hydraulic valve. The chemical composition of the device was based mainly on biological scaffolds combined with a minimum content of a tailor-made synthetic copolymer.
View Article and Find Full Text PDFThe synthetic system to produce silver nanoparticles (AgNP) based on the thermally activated reduction of aqueous silver ions by chitosan (CS) polysaccharide is investigated to unravel the physicochemical processes controlling AgNP nucleation and growth. An anomalous preeminence of AgNP nucleation over growth is found for conditions under which the opposite trend is obeyed for AgNP synthesized from soluble precursors in homogeneous media. The behavior is modeled assuming the formation of a tridimensional supramolecular structure from silver ions / CS´s amino groups coordination complexes, driving the crosslinking within polymer folding and aggregation in shaping random coils.
View Article and Find Full Text PDFHierarchical porous polymer systems are increasingly applied to catalysis, bioengineering, or separation technology because of the versatility provided by the connection of mesopores with percolating macroporous structures. Nuclear magnetic resonance (NMR) is a suitable technique for the study of such systems as it can detect signals stemming from the confined liquid and translate this information into pore size, molecular mobility, and liquid-surface interactions. We focus on the properties of water confined in macroporous polymers of ethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate [poly(EGDMA-co-HEMA)] with different amounts of cross-linkers, in which a substantial variation of hydroxyl groups is achieved.
View Article and Find Full Text PDFEvaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics.
View Article and Find Full Text PDFNMR is a fast, nondestructive, and noninvasive technique that can provide information about the pore structure of macroporous polymer beads and the dynamics of liquids confined in them. In this work, we describe the study of the pore structure of the macroporous polymer of ethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate [poly(EGDMA-co-HEMA)] in the dry but also in the swollen state by measuring relaxation times of liquids contained in the polymer network. The results show that the pore architecture differs from the dry to the soaked state.
View Article and Find Full Text PDFIn this work, three methods (ethanol, HCl, and CaCl(2) routes) of sodium alginate extraction-purification from brown seaweeds (Macrocystis pyrifera) were used in order to study the influence of process conditions on final properties of the polymer. In the CaCl(2) route, was found that the precipitation step in presence of calcium ions followed by proton-exchange in acid medium clearly gives alginates with the lowest molecular weight and poor mechanical properties. It is well known that the acid treatment degrade the ether bonds on the polymeric chain.
View Article and Find Full Text PDFWe describe a patient with limb girdle muscular dystrophy with evidence of a D596N novel mutation of the LMNA gene. He presented with a dilated cardiomyopathy and heart failure. He successfully underwent a cardiac rehabilitation program without cardiovascular complications.
View Article and Find Full Text PDFJ Biochem Biophys Methods
January 2003
The influence of the morphology of ethylene glycol dimethacrylate-hydroxyethyl methacrylate copolymer [poly(EGDMA-co-HEMA)] base support to obtain different Fe(3+)-containing sorbents and their properties in retention of O-phosphothreonine [Thre(P)] is examined in this paper. Three base supports poly(EGDMA-co-HEMA) (I-III) were obtained using different quantities of initiator in suspension polymerization reactions. These products were submitted to chemical modifications using 1,4-butanediol diglycidyl ether (BDGE) in activation reactions and different chelating agents (iminodiacetic acid, IDA; disodium ethylenediamine tetraacetate, EDTA; and hexamethylenediamine tetrapropanoic acid, HMDTP) in coupling reactions to attain Fe(3+)-containing sorbents.
View Article and Find Full Text PDF