Publications by authors named "Cesar E P Villegas"

The optical response of layered transition metal dichalcogenides (TMDCs) exhibits remarkable excitonic properties which are important from both fundamental and device application viewpoints. One of these phenomena is the observation of intralayer/interlayer excitons. While much effort has been done to characterize excitons in monolayer TMDCs and their heterostructures, a quite limited number of works have addressed the exciton spectra of their bulk counterparts.

View Article and Find Full Text PDF

The realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device.

View Article and Find Full Text PDF

The spin-dependent transport properties of armchair graphene nanoribbons in the presence of extrinsic spin-orbit coupling induced by a random distribution of nickel adatoms is studied. By combining a recursive Green's function formalism with density functional theory, we explore the influence of ribbon length and metal adatom concentration on the conductance. At a given length, we observed a significant enhancement of the spin-flip channel around resonances and at energies right above the Fermi level.

View Article and Find Full Text PDF

In this work a simple approach to transform MoS from its metallic (1T' to semiconductor 2H) character via gold nanoparticle surface decoration of a MoS reduced graphene oxide (rGO) nanocomposite is proposed. The possible mechanism to this phase transformation was investigated using different spectroscopy techniques, and supported by density functional theory theoretical calculations. A mixture of the 1T'- and 2H-MoS phases was observed from the Raman and Mo 3d high resolution x-ray photoelectron spectra analysis in the MoS-rGO nanocomposite.

View Article and Find Full Text PDF

Pd-containing alloys are promising materials for catalysis. Yet, the relationship of the structure-property performance strongly depends on their chemical composition, which is currently not fully resolved. Herein, we present a physical vapor deposition methodology for developing PdAu alloys with fine control over the chemical composition.

View Article and Find Full Text PDF

We investigate the spin-dependent electronic and transport properties of armchair graphene nanoribbons including spin-orbit coupling due to the presence of nickel and iridium adatoms by using ab initio calculations within the spin-polarized density functional theory and non-equilibrium Green's function formalism. Our results indicate that the intensity of the spin-flip precession is a direct consequence of the relaxed adsorption sites of the adatoms. We point out that d orbitals of Ni and Ir result in strong dependence on the spin-conserved and spin-flip transmission probabilities.

View Article and Find Full Text PDF

Two-dimensional van der Waals heterostructures are attractive candidates for optoelectronic nanodevice applications. The charge transport process in these systems has been extensively investigated, however the effect of coupling between specific electronic states on the charge transfer process is not completely established yet. Here, interfacial charge transfer (CT) in the MoS/graphene/SiO heterostructure is investigated from static and dynamic points of view.

View Article and Find Full Text PDF

Excitons play a key role in technological applications since they have a strong influence on determining the efficiency of photovoltaic devices. Recently, it has been shown that the allotropes of phosphorus possess an optical band gap that can be tuned over a wide range of values including the near-infrared and visible spectra, which would make them promising candidates for optoelectronic applications. In this work we carry out ab initio many-body perturbation theory calculations to study the excitonic effects on the optical properties of two-dimensional phosphorus allotropes: the case of blue and black monolayers.

View Article and Find Full Text PDF

Black phosphorus (BP) has gained renewed attention due to its singular anisotropic electronic and optical properties that might be exploited for a wide range of technological applications. In this respect, the thermal properties are particularly important both to predict its room temperature operation and to determine its thermoelectric potential. From this point of view, one of the most spectacular and poorly understood phenomena is indeed the BP temperature-induced band gap opening; when temperature is increased, the fundamental band gap increases instead of decreases.

View Article and Find Full Text PDF

Recently, atomically well-defined cove-shaped graphene nanoribbons have been obtained using bottom-up synthesis. These nanoribbons have an optical gap in the visible range of the spectrum which make them candidates for donor materials in photovoltaic devices. From the atomistic point of view, their electronic and optical properties are not clearly understood.

View Article and Find Full Text PDF

We have systematically studied the single-particle states in quantum rings produced by a set of concentric circular gates over a graphene sheet placed on a substrate. The resulting potential profiles and the interaction between the graphene layer and the substrate are considered within the Dirac Hamiltonian in the framework of the envelope function approximation. Our simulations allow microscopic mapping of the character of the electron and hole quasi-particle solutions according to the applied voltage.

View Article and Find Full Text PDF

We study the single-particle properties of Dirac Fermions confined to a double quantum wire system based on graphene. We map out the spatial regions where electrons in a given subband display the largest occupation probability induced by spatial anisotropic effects associated to the interaction strength between the graphene wires and the substrate. Here, the graphene-substrate interaction is considered as an ad hoc parameter which destroys the zero-gap observed in the relativistic Dirac cone characteristic of graphene electronic energy dispersions.

View Article and Find Full Text PDF