Publications by authors named "Cesar Corzo"

Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease affecting the swine industry. The disease is caused by the PRRS virus (PRRSV). Despite extensive biosecurity and control measures, the persistence and seasonality of the virus have raised questions about the virus's environmental dynamics during the fall season when the yearly epidemic onset begins and when crop harvesting and manure incorporation into the field occur.

View Article and Find Full Text PDF

Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.

View Article and Find Full Text PDF

Porcine circoviruses (PCVs), including porcine circovirus 2 (PCV2) and porcine circovirus 3 (PCV3), have been associated with clinical syndromes in swine, resulting in significant economic losses. To better understand the epidemiology and clinical relevance of PCV2 and PCV3, this study analyzed a dataset comprising diagnostic data from six veterinary diagnostic laboratories (VDLs) in the United States of America. The data comprised of polymerase chain reaction (PCR) test results, sample type, and age group for PCV2 and PCV3 submissions from 2002-2023.

View Article and Find Full Text PDF

Porcine epidemic diarrhea (PED) and Porcine reproductive and respiratory syndrome (PRRS) are viral diseases that continue to challenge the US swine industry. Despite many known risk factors, unusual circumstances associated with their occurrence continues to be poorly explained. We investigated if extreme weather events (flood, heavy rain, high wind and tornadoes, measured at a county-level) are associated with the occurrence of both diseases up to ten weeks after the occurrence of the weather event using a case control study and logistic regression modeling to control for covariates.

View Article and Find Full Text PDF

New PRRSV variants are constantly emerging due to the rapid evolution of this virus. We aimed to describe the emergence of a new PRRSV variant within sub-lineage 1 C, its space-time distribution, and its impact on affected herds. Additionally, we discuss considerations on how to monitor emerging PRRSV variants.

View Article and Find Full Text PDF

Background: During the fall of 2020, the porcine reproductive and respiratory syndrome virus (PRRSV) L1C.5 variant emerged and rapidly spread throughout southern Minnesota generating questions regarding possible transmission routes. This study aimed to investigate whether PRRSV could be detected on surfaces inside and outside pig barns housing L1C.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally significant pathogen of pigs. Preventing the entry of PRRSV into swine breeding herds enhances animal health and welfare. A recently published retrospective cohort study reported significant differences in PRRSV incidence risk between breeding herds that practiced Next Generation Biosecurity (NGB) COMPLETE, versus herds that practiced a partial approach (NGB INCOMPLETE) over a 2-year period.

View Article and Find Full Text PDF

Specimens collected from dead pigs are a welfare-friendly and cost-effective active surveillance. This study aimed to evaluate the accuracy of different postmortem specimens from dead piglets for disease detection, using PRRSV as an example. Three farrow-to-wean farms undergoing PRRSV elimination were conveniently selected.

View Article and Find Full Text PDF

Understanding regional disease risk is critical for swine disease prevention and control. Since 2011, the Morrison Swine Health Monitoring Project (MSHMP) has strengthened partnerships among practitioners and producers to report health events (e.g.

View Article and Find Full Text PDF

This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed.

View Article and Find Full Text PDF

PDCoV, an enveloped RNA virus, causes atrophic enteritis in neonatal piglets, leading to diarrhea, malabsorption, dehydration, and death. The study aims to fill the gap in the current epidemiological information about PDCoV in the U.S.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine, with losses due to poor reproductive performance and high piglet and growing pig mortality. Transmission of porcine reproductive and respiratory syndrome virus (PRRSV) may occur by both direct and indirect routes; the latter includes exposure to PRRSV-contaminated fomites, aerosols, and arthropod vectors. This review has collected available data on the ex-vivo environmental stability and persistence of PRRSV in an effort to highlight important sources of the virus and to determine the role of environmental conditions on the stability of the virus, especially temperature.

View Article and Find Full Text PDF

Objective: Porcine reproductive and respiratory syndrome (PRRS) is a significant disease of swine. The purpose of this study was to determine whether application of a comprehensive, science-based approach to breeding herd biosecurity, known as next-generation biosecurity (NGB), could reduce PRRS incidence risk across a large commercial production company.

Animals: Pigs (381,404 sows across 76 breeding herds).

View Article and Find Full Text PDF

Senecavirus A (SVA) causes vesicular disease in swine and has been responsible for a rampant increase in the yearly number of foreign animal disease investigations conducted in the United States. Diagnostic investigations for SVA are typically performed by sampling animals individually, which is labor-intensive and stressful. Developing an alternative aggregate sampling method would facilitate the detection of this virus at the population level.

View Article and Find Full Text PDF

The United States (U.S.) swine industry has struggled to control porcine reproductive and respiratory syndrome (PRRS) for decades, yet the causative virus, PRRSV-2, continues to circulate and rapidly diverges into new variants.

View Article and Find Full Text PDF

Molecular diagnostic tests have evolved very rapidly in the field of human health, especially with the arrival of the recent pandemic caused by the SARS-CoV-2 virus. However, the animal sector is constantly neglected, even though accurate detection by molecular tools could represent economic advantages by preventing the spread of viruses. In this regard, the swine industry is of great interest.

View Article and Find Full Text PDF

Describing PRRSV whole-genome viral diversity data over time within the host and within-farm is crucial for a better understanding of viral evolution and its implications. A cohort study was conducted at one naïve farrow-to-wean farm reporting a PRRSV outbreak. All piglets 3-5 days of age (DOA) born to mass-exposed sows through live virus inoculation with the recently introduced wild-type virus two weeks prior were sampled and followed up at 17-19 DOA.

View Article and Find Full Text PDF

Transport of pigs between sites occurs frequently as part of genetic improvement and age segregation. However, a lack of transport biosecurity could have catastrophic implications if not managed properly as disease spread would be imminent. However, there is a lack of a comprehensive study of vehicle movement trends within swine systems in the Midwest.

View Article and Find Full Text PDF

Given the proximity of African swine fever (ASF) to the U.S., there is an urgent need to better understand the possible dissemination pathways of the virus within the U.

View Article and Find Full Text PDF

The repeated emergence of new genetic variants of PRRSV-2, the virus that causes porcine reproductive and respiratory syndrome (PRRS), reflects its rapid evolution and the failure of previous control efforts. Understanding spatiotemporal heterogeneity in variant emergence and spread is critical for future outbreak prevention. Here, we investigate how the pace of evolution varies across time and space, identify the origins of sub-lineage emergence, and map the patterns of the inter-regional spread of PRRSV-2 Lineage 1 (L1)-the current dominant lineage in the U.

View Article and Find Full Text PDF

Indirect transmission of influenza A virus (IAV) contributes to virus spread in pigs. To identify farm management activities with the ability to contaminate farmworkers' hands and clothing that then could be a source of virus spread to other pigs, we conducted a within-farm, prospective IAV surveillance study. Hands and clothes from farmworkers performing the activities of piglet processing, vaccination, or weaning were sampled before and after the activities were performed.

View Article and Find Full Text PDF

The use of processing fluids to monitor the breeding herd's porcine reproductive and respiratory syndrome (PRRS) status has gained industry acceptance. However, little is known about PRRS virus RT-qPCR detection dynamics in processing fluids and factors that may contribute to maintain PRRS virus in the herd after an outbreak. This study aimed to describe weekly RT-qPCR processing fluid results in breeding herds after an outbreak and to evaluate the proportion of RT-qPCR positive results among parity groups.

View Article and Find Full Text PDF

Background: Hesitation on eliminating Porcine Reproductive and Respiratory Syndrome virus (PRRSV) from breeding herds exists since it is difficult to predict how long the herd will remain virus-free. We aimed to estimate the time that breeding herds remained virus-free (naïve) after PRRSV elimination was achieved.

Methods: Production systems voluntarily shared their breeding herds' health status weekly between July 2009 and October 2021.

View Article and Find Full Text PDF