Publications by authors named "Cesar Augusto F de Oliveira"

A series of 4-substituted pyrimido[4,5-d]azepines that are potent, selective 5-HT2C receptor partial agonists is described. A rational medicinal chemistry design strategy to deliver CNS penetration coupled with SAR-based optimization of selectivity and agonist potency provided compounds with the desired balance of preclinical properties. Lead compounds 17 (PF-4479745) and 18 (PF-4522654) displayed robust pharmacology in a preclinical canine model of stress urinary incontinence (SUI) and no measurable functional agonism at the key selectivity targets 5-HT2A and 5-HT2B in relevant tissue-based assay systems.

View Article and Find Full Text PDF

The synthetic host cucurbit[7]uril (CB[7]) binds aromatic guests or metal complexes with ultrahigh affinity compared with that typically displayed in protein-ligand binding. Due to its small size, CB[7] serves as an ideal receptor-ligand system for developing computational methods for molecular recognition. Here, we apply the recently developed variational implicit-solvent model (VISM), numerically evaluated by the level-set method, to study hydration effects in the high-affinity binding of the B2 bicyclo[2.

View Article and Find Full Text PDF

Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that represents one of the major health challenges of the Latin American countries. Successful efforts were made during the last few decades to control the transmission of this disease, but there is still no treatment for the 10 million adults in the chronic phase of the disease. In T.

View Article and Find Full Text PDF

Histone deacetylases (HDACs), together with histone acetyltransferases (HATs), regulate gene expression by modulating the acetylation level of chromatin. HDAC3 is implicated in many important cellular processes, particularly in cancer cell proliferation and metastasis, making inhibition of HDAC3 a promising epigenetic treatment for certain cancers. HDAC3 is activated upon complex formation with both inositol tetraphosphate (IP4) and the deacetylase-activating domain (DAD) of multi-protein nuclear receptor corepressor complexes.

View Article and Find Full Text PDF

Molecular dynamics simulation using enhanced sampling methods is one of the powerful computational tools used to explore protein conformations and free energy landscapes. Enhanced sampling methods often employ either an increase in temperature or a flattening of the potential energy surface to rapidly sample phase space, and a corresponding reweighting algorithm is used to recover the Boltzmann statistics. However, potential energies of complex biomolecules usually involve large fluctuations on a magnitude of hundreds of kcal/mol despite minimal structural changes during simulation.

View Article and Find Full Text PDF

We use thermodynamic integration (TI) and explicit solvent molecular dynamics (MD) simulation to estimate the absolute free energy of host-guest binding. In the unbound state, water molecules visit all of the internally accessible volume of the host, which is fully hydrated on all sides. Upon binding of an apolar guest, the toroidal host cavity is fully dehydrated; thus, during the intermediate λ stages along the integration, the hydration of the host fluctuates between hydrated and dehydrated states.

View Article and Find Full Text PDF

Free energy governs the equilibrium extent of many biological processes. High barriers separating free energy minima often limit the sampling in molecular dynamics (MD) simulations, leading to inaccurate free energies. Here, we demonstrate enhanced sampling and improved free energy calculations, relative to conventional MD, using windowed accelerated MD within a Hamiltonian replica exchange framework (w-REXAMD).

View Article and Find Full Text PDF

With the rise in resistance to antibiotics such as methicillin, there is a need for new drugs. We report here the discovery and X-ray crystallographic structures of 10 chemically diverse compounds (benzoic, diketo, and phosphonic acids, as well as a bisamidine and a bisamine) that inhibit bacterial undecaprenyl diphosphate synthase, an essential enzyme involved in cell wall biosynthesis. The inhibitors bind to one or more of the four undecaprenyl diphosphate synthase inhibitor binding sites identified previously, with the most active leads binding to site 4, outside the catalytic center.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) repress transcription by deacetylating acetyllysines on specific histone tails. HDAC3 is implicated in neurodegenerative diseases, certain leukemias, and even in disrupting HIV-1 latency. A recent crystal structure of HDAC3 in complex with the deacetylase-activating domain (DAD) of its corepressor complex revealed an inositol tetraphosphate (IP4) molecule at the protein-protein interface.

View Article and Find Full Text PDF

In this work, we critically assess the ability of the all-atom enhanced sampling method accelerated molecular dynamics (aMD) to investigate conformational changes in proteins that typically occur on the millisecond time scale. We combine aMD with the inherent power of graphics processor units (GPUs) and apply the implementation to the bovine pancreatic trypsin inhibitor (BPTI). A 500 ns aMD simulation is compared to a previous millisecond unbiased brute force MD simulation carried out on BPTI, showing that the same conformational space is sampled by both approaches.

View Article and Find Full Text PDF

Idiosyncratic adverse drug reactions are unpredictable, dose-independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkages between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01.

View Article and Find Full Text PDF

Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level.

View Article and Find Full Text PDF

Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles.

View Article and Find Full Text PDF

Accelerated molecular dynamics (aMD) is an enhanced sampling technique that expedites conformational space sampling by reducing the barriers separating various low-energy states of a system. Here, we present the first application of the aMD method on lipid membranes. Altogether, ∼1.

View Article and Find Full Text PDF

In most eubacteria, apicomplexans, and most plants, including the causal agents for diseases such as malaria, leprosy, and tuberculosis, the methylerythritol phosphate pathway is the route for the biosynthesis of the C(5) precursors to the essential isoprenoid class of compounds. Owing to their absence in humans, the enzymes of the methylerythritol phosphate pathway have become attractive targets for drug discovery. This work investigates a new class of inhibitors against the second enzyme of the pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase.

View Article and Find Full Text PDF

Researchers engaged in computer-aided drug design often wish to measure the volume of a ligand-binding pocket in order to predict pharmacology. We have recently developed a simple algorithm, called POVME (POcket Volume MEasurer), for this purpose. POVME is Python implemented, fast, and freely available.

View Article and Find Full Text PDF

Derived from the extensive work in the area of small molecule zinc(II) ion sensors, chelating fragment libraries of quinoline- and benzimidazole-sulfonamides have been prepared and screened against several different zinc(II)-dependent matrix metalloproteinases (MMPs). The fragments show impressive inhibition of these metalloenzymes and preferences for different MMPs based on the nature of the chelating group. The findings show that focused chelator libraries are a powerful strategy for the discovery of lead fragments for metalloprotein inhibition.

View Article and Find Full Text PDF

An extension of the constant pH method originally implemented by Mongan et al. (J. Comput.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) comprise a class of flexible proteins required for normal tissue remodeling. Overexpression of MMPs is associated with a wide range of pathophysiological processes, including vascular disease, multiple sclerosis, Alzheimer's disease, and cancer. Nearly all MMP inhibitors have failed in clinical trials, in part due to lack of specificity.

View Article and Find Full Text PDF

In this work we propose a straightforward and efficient approach to improve accuracy and convergence of free energy simulations in condensed-phase systems. We also introduce a new accelerated Molecular Dynamics (MD) approach in which molecular conformational transitions are accelerated by lowering the energy barriers while the potential surfaces near the minima are left unchanged. All free energy calculations were performed on the propane-to-propane model system.

View Article and Find Full Text PDF

Anthrax lethal factor (LF) is a critical virulence factor in the pathogenesis of anthrax. A structure-activity relationship (SAR) of potential lethal factor inhibitors (LFi) is presented in which the zinc-binding group (ZBG), linker, and backbone moieties for a series of hydroxypyrone-based compounds were systematically varied. It was found that hydroxypyrothione ZBGs generate more potent inhibitors than hydroxypyrone ZBGs.

View Article and Find Full Text PDF

Gold(I) compounds have been used in the treatment of rheumatoid arthritis for over 80 years, but the biological targets and the structure-activity relationships of these drugs are not well understood. Of particular interest is the molecular mechanism behind the antiarthritic activity of the orally available drug triethylphosphine(2,3,4,6-tetra-O-acetyl-beta-l-D-thiopyranosato-S) gold(I) (auranofin, Ridaura). The cathepsin family of lysosomal, cysteine-dependent enzymes is an attractive biological target of Au(I) and is inhibited by auranofin and auranofin analogs with reasonable potency.

View Article and Find Full Text PDF

Matrix Metalloproteinases (MMPs) are zinc-containing proteinases that are responsible for the metabolism of extracellular matrix proteins. Overexpression of MMPs has been associated with a wide range of pathological diseases such as arthritis, cancer, multiple sclerosis and Alzheimer's disease. The excessive and unregulated activity of Matrix Metalloproteinases type 2 (MMP-2), also known as gelatinase A, has been identified in a numbers of cancer metastases.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulation is the standard computational technique used to obtain information on the time evolution of the conformations of proteins and many other molecular systems. However, for most biological systems of interest, the time scale for slow conformational transitions is still inaccessible to standard MD simulations. Several sampling methods have been proposed to address this issue, including the accelerated molecular dynamics method.

View Article and Find Full Text PDF

Slow diffusive conformational transitions play key functional roles in biomolecular systems. Our ability to sample these motions with molecular dynamics simulation in explicit solvent is limited by the slow diffusion of the solvent molecules around the biomolecules. Previously, we proposed an accelerated molecular dynamics method that has been shown to efficiently sample the torsional degrees of freedom of biomolecules beyond the millisecond timescale.

View Article and Find Full Text PDF