J Plant Physiol
November 2024
The target of rapamycin (TOR) signaling pathway is critical for plant growth and stress adaptation through maintaining the proper balance between cell proliferation and differentiation. Here, by using BX517, an inhibitor of the mammalian phosphoinositide-dependent protein kinase 1 (PDK1), we tested the hypothesis that a plant ortholog of PDK1 could influence the TOR complex activity and its target, the S6 ribosomal protein kinase (S6K) in Arabidopsis seedlings. Through locally applying sucrose to leaves, which promotes root growth and plant biomass production via TOR signaling, we could demonstrate the opposite trend upon BX517 treatment, which antagonized sucrose-induced plant growth and overly decreased root development through inhibiting the expression of mitotic cyclins CYCB1 and CYCA3 in root meristems.
View Article and Find Full Text PDFHydrogen peroxide (HO) is naturally produced by plant cells during normal development and serves as a messenger that regulates cell metabolism. Despite its importance, the relationship between hydrogen peroxide and the target of rapamycin (TOR) pathway, as well as its impact on cell division, has been poorly analyzed. In this study, we explore the interaction of HO with TOR, a serine/threonine protein kinase that plays a central role in controlling cell growth, size, and metabolism in Arabidopsis thaliana.
View Article and Find Full Text PDFCyclodipeptides (CDPs) are the smallest peptidic molecules that can be produced by diverse organisms such as bacteria, fungi, and animals. They have multiple biological effects. In this paper, we examined the CDPs produced by the bacteria Pseudomonas aeruginosa PAO1, which are known as opportunistic pathogens of humans and plants on TARGET OF RAPAMYCIN (TOR) signaling pathways, and regulation of root system architecture.
View Article and Find Full Text PDFThe Target of Rapamycin (TOR) protein kinase plays a pivotal role in metabolism and gene expression, which enables cell proliferation, growth and development. Lipopolysaccharides (LPS) are a class of complex glycolipids present in the cell surface of Gram-negative bacteria and mediate plant-bacteria interactions. In this study, we examined whether LPS from Azospirillum brasilense Sp245 affect Arabidopsis thaliana growth via a mechanism involving TOR.
View Article and Find Full Text PDFThe co-culture of plant beneficial microbes to stimulate the production of antimicrobial metabolites is gaining ground. Here, the inactivated mycelium was used to induce the biosynthesis of antifungal compounds in the co-culture systems of sp. and .
View Article and Find Full Text PDFAzospirillum brasilense colonizes plant roots and improves productivity, but the molecular mechanisms behind its phytostimulation properties remain mostly unknown. Here, we uncover an important role of TARGET OF RAPAMYCIN (TOR) signaling on the response of Arabidopsis thaliana to A. brasilense Sp245.
View Article and Find Full Text PDFProtoplasma
March 2020
ALTERED MERISTEM PROGRAM 1 (AMP1) encodes a putative glutamate-carboxypeptidase important for plant growth and development. In this study, by comparing the growth of Arabidopsis wild-type, amp1-10 and amp1-13 mutants, and AMP1-GFP/OX2- and AMP1-GFP/OX7-overexpressing seedlings in vitro and in soil, we uncover the role of AMP1 in biomass accumulation in Arabidopsis. AMP1-overexpressing plants had longer primary roots and increased lateral root number and density than the WT, which correlated with improved root, shoot, and total biomass accumulation.
View Article and Find Full Text PDFBackground: is an opportunistic and pathogenic bacterium with the ability to produce cyclodipeptides (CDPs), which belong to a large family of molecules with important biological activities. Excessive amounts of CDPs produced by strains can activate an auxin response in and promote plant growth. Target of rapamycin (TOR) is an evolutionarily conserved eukaryotic protein kinase that coordinates cell growth and metabolic processes in response to environmental and nutritional signals.
View Article and Find Full Text PDF