Publications by authors named "Cesar Armando Contreras Lancheros"

For decades, only two nitroheterocyclic drugs have been used as therapeutic agents for Chagas disease. However, these drugs present limited effectiveness during the chronic phase, possess unfavorable pharmacokinetic properties, and induce severe adverse effects, resulting in low treatment adherence. A previous study reported that -(cyclohexylcarbamothioyl) benzamide (), -(-butylcarbamothioyl) benzamide (), and (4-bromo--(3-nitrophenyl) carbamothioyl benzamide () present selective antiprotozoal activity against all developmental forms of Y strain.

View Article and Find Full Text PDF

Introduction: is one of the leading causes of invasive fungal infections worldwide. Cryptococcal meningoencephalitis is the main challenge of antifungal therapy due to high morbidity and mortality rates, especially in low- and middle-income countries. This can be partly attributed to the lack of specific diagnosis difficulty accessing treatment, antifungal resistance and antifungal toxicity.

View Article and Find Full Text PDF

is the leading cause of cryptococcosis, an invasive and potentially fatal infectious disease. Therapeutic failures are due to the increase in antifungal resistance, the adverse effects of drugs, and the unavailability of therapeutic regimens in low-income countries, which limit the treatment of cryptococcosis, increasing the morbidity and mortality associated with these infections. Thus, new antifungal drugs and innovative strategies for the cryptococcosis treatment are urgently needed.

View Article and Find Full Text PDF

Two β-carboline compounds, 8i and 6d, demonstrated in vitro antileishmanial activity against Leishmania (L.) amazonensis promastigotes similar to that of miltefosine (MIL). Estimates of the membrane-water partition coefficient (K) and the compound concentrations in the membrane (c) and aqueous phase (c) for half maximal inhibitory concentration were made.

View Article and Find Full Text PDF

or Group B (GBS) remains a leading cause of neonatal infections worldwide; and the maternal vaginal-rectal colonization increases the risk of vertical transmission of GBS to neonates and development of infections. This study reports the antibacterial effect of the oleoresin from Jacq. L.

View Article and Find Full Text PDF

Activity, mechanisms of action, and toxicity of natural compounds have been investigated in a context in which knowledge on which pathway is activated remains crucial to understand the action mechanism of these bioactive substances when treating an infected host. Herein, we showed an ability of copaiba oil and kaurenoic acid to eliminate Trypanosoma cruzi forms by infected macrophages through other mechanisms in addition to nitric oxide, reactive oxygen species, iron metabolism, and antioxidant defense. Both compounds induced an anti-inflammatory response with an increase in IL-10 and TGF-β as well as a decrease in IL-12 production.

View Article and Find Full Text PDF

Background: Chagas' disease, caused by Trypanosoma cruzi, was described for the first time over a hundred years ago. Nonetheless, clinically available drugs still lack effective and selective properties. Nitric oxide (NO) produced by activated macrophages controls the progression of disease by killing the parasite.

View Article and Find Full Text PDF

Streptococcus agalactiae (group B streptococci (GBS)) is an important infections agent in newborns associated with maternal vaginal colonization. Intrapartum antibiotic prophylaxis in GBS-colonized pregnant women has led to a significant reduction in the incidence of early neonatal infection in various geographic regions. However, this strategy may lead to resistance selecting among GBS, indicating the need for new alternatives to prevent bacterial transmission and even to treat GBS infections.

View Article and Find Full Text PDF

In trypanosomatids, Ca²+-binding proteins can affect parasite growth, differentiation and invasion. Due to their importance for parasite maintenance, they become an attractive target for drug discovery and design. Phytomonas serpens 15T is a non-human pathogenic trypanosomatid that expresses important protein homologs of human pathogenic trypanosomatids.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionssr7tmn45illefcj62ngi1vke958bg55): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once