Unlabelled: The aim of this study was to compare the influence of heat treatment on fracture resistance (FR) of different ceramic materials used for CAD/CAM systems.
Methods: Eighty monolithic restorations were designed using the same parameters and milled with a CAD/CAM system (CEREC SW 5.0, PrimeMill, Dentsply-Sirona™, Bensheim, Germany), forming five study groups: Group 1 (n = 10), CEREC Tessera (Dentsply-Sirona™, Bensheim, Germany) crystallized (CCT), Group 2 (n = 10), CEREC Tessera uncrystallized (UCT), Group 3 (n = 20), Emax-CAD (Ivoclar Vivadent, Schaan, Liechtenstein) (CEC), Group 4 (n = 20), Vita Suprinity (Vita Zahnfabrik, Bad Säckingen, Germany) (CVS), and Group 5 (n = 20) Cameo (Aidite, Qinhuangdao, China) (CC).
The aim of this study was to evaluate and compare the fracture resistance of a single-unit fixed prosthesis, using a CAD/CAM PMMA material and two printed materials (3DPPa and 3DPPb). A typodont with a specific preparation for a full crown was used; a digital impression was made with a state-of-the-art scanner (PrimeScan, Dentsply-Sirona, New York, NY, USA), and a full coverage restoration was designed using a biogeneric design proposal by means of specific software (InLAB 22.1, Dentsply-Sirona, NY, USA).
View Article and Find Full Text PDFUnlabelled: The development of digital technologies has allowed for the fabrication of new materials; however, it makes it difficult to choose the best methods to obtain occlusal splints with optimal properties, so it is essential to evaluate the effectiveness of these materials. The aim of the study is to compare the fracture resistance of occlusal splints made of different materials after thermo-mechanical aging.
Methods: A total of 32 samples were made from 4 materials (two 3D printed polymeric materials, a PMMA disc for CAD/CAM, and a conventional heat-cured acrylic resin); subsequently, the fracture test was performed using the load compression mode applied occlusally on the splint surface.
It is well known that the use of continuous reinforcing fibers can largely improve the typical low in-plane mechanical properties of 3D-printed parts. However, there is very limited research on the characterization of the interlaminar fracture toughness of 3D-printed composites. In this study, we investigated the feasibility of determining the mode I interlaminar fracture toughness of 3D-printed cFRP composites with multidirectional interfaces.
View Article and Find Full Text PDFUnlabelled: The aim of this study was to evaluate and compare the fracture resistance of temporary restorations made of polymethylmethacrylate (PMMA), graphene-modified PMMA (GRA), acetal resin (AR) and polysulfone (PS) obtained by a subtractive technique (milling) using a computer-aided design and manufacturing (CAD/CAM) system of a three-unit fixed dental prosthesis (FDP).
Methods: Four groups of ten samples were fabricated for each material. Each specimen was characterized by a compression test on a universal testing machine, all specimens were loaded to fracture and the value in Newtons (N) was recorded by software connected to the testing machine.
In this article, an experimental investigation was conducted to study the effects of 3D printed structured fabrics on the tensile strength of two additive manufacturing technologies: (i) fused deposition modeling (FDM); and (ii) stereolithography (SLA). Three types of structured fabrics were designed in a linked fabric structure, which resembled the main characteristics of a conventional textile. Through computer-aided design (CAD), the textile structures were sketched, which, in a STL format, were transferred to 3D printing software, and consequently, they were printed.
View Article and Find Full Text PDFIn this paper, the one-dimensional tensile behavior of Kunth fibre/polypropylene (PP+GAK) composites is modeled. The classical model of Kelly-Tyson and its Bowyer-Bader's solution is not able to reproduce the entire stress-strain curve of the composite. An integral (In-Built) micromechanical model proposed by Isitman and Aykol, initially for synthetic fiber-reinforced composites, was applied to predict micromechanical parameters in short natural fiber composites.
View Article and Find Full Text PDF