The human body is programmed with definite quantities, magnitudes, and proportions. At the microscopic level, such definite sizes manifest in individual cells - different cell types are characterized by distinct cell sizes whereas cells of the same type are highly uniform in size. How do cells in a population maintain uniformity in cell size, and how are changes in target size programmed? A convergence of recent and historical studies suggest - just as a thermostat maintains room temperature - the size of proliferating animal cells is similarly maintained by homeostatic mechanisms.
View Article and Find Full Text PDFIntroduction: Metformin has known mechanistic benefits on COVID-19 infection due to its anti-inflammatory effects and its action on the ACE2 receptor. However, some physicians are reluctant to use it in hypoxemic patients due to potential lactic acidosis. The primary purpose of the study was to determine whether metformin use is associated with survival.
View Article and Find Full Text PDFWhile molecules that promote the growth of animal cells have been identified, it remains unclear how such signals are orchestrated to determine a characteristic target size for different cell types. It is increasingly clear that cell size is determined by size checkpoints-mechanisms that restrict the cell cycle progression of cells that are smaller than their target size. Previously, we described a p38 MAPK-dependent cell size checkpoint mechanism whereby p38 is selectively activated and prevents cell cycle progression in cells that are smaller than a given target size.
View Article and Find Full Text PDFObjective: To determine the beliefs and attitudes towards diabetes of rural health care providers in Aklan, Philippines using the Diabetes Attitude Scale 3 (DAS-3) and to determine factors associated with it.
Methodology: This is a cross-sectional analytic survey. A total of 339 health care providers were given self-administered DAS-3 questionnaires.
Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length.
View Article and Find Full Text PDF