J Biomater Sci Polym Ed
February 2024
Carbon allotrope materials (i.e. carbon nanotubes (CNTs), graphene, graphene oxide (GO)), have been used to reinforce acrylic bone cement.
View Article and Find Full Text PDFBackground: Bovine pericardium (BP) is a scaffold widely used in soft tissues regeneration; however, its calcification in contact with glutaraldehyde, represent an opportunity for its application in hard tissues, such as bone in the oral cavity.
Objective: To develop and to characterize decellularized and glutaraldehyde-crosslinked bovine pericardium (GC-BP) as a potential scaffold for guided bone regeneration GBR.
Methods: BP samples from healthy animals of the bovine zebu breed were decellularized and crosslinked by digestion with detergents and glutaraldehyde respectively.
Recently, chitin biopolymer has received much attention as a wide variety of biomedical application for this and its derivatives have been reported, in fact, the study of non-conventional species as alternative sources of them compounds has taken particular interest. Here, we present a comparative physicochemical survey of the two tagmata in the exoskeleton of the horseshoe crab Limulus polyphemus: the prosoma and the opisthosoma, collected in Yucatán, Mexico. The characterization included CHNSO analysis, FTIR, TGA, DSC, XRD, and SEM.
View Article and Find Full Text PDFChitosan hydrogels are biomaterials with excellent potential for biomedical applications. In this study, chitosan hydrogels were prepared at different concentrations and molecular weights by freeze-drying. The chitosan sponges were physically crosslinked using sodium bicarbonate as a crosslinking agent.
View Article and Find Full Text PDFDuring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, scientists from different areas are looking for alternatives to fight it. SARS-CoV-2, the cause of the infectious respiratory disease COVID-19, is mainly transmitted through direct or indirect contact with infected respiratory droplets. The integrity of the virus structure is crucial for its viability to attack human cells.
View Article and Find Full Text PDFPolymers (Basel)
November 2022
Grafting polyethylene glycol (PEG) onto a polymer's surface is widely used to improve biocompatibility by reducing protein and cell adhesion. Although PEG is considered to be bioinert, its incorporation onto biomaterials has shown to improve cell viability depending on the amount and molecular weight (MW) used. This phenomenon was studied here by grafting PEG of three MW onto polyurethane (PU) substrata at three molar concentrations to assess their effect on PU surface properties and on the viability of osteoblasts and fibroblasts.
View Article and Find Full Text PDFThe surface of Tecoflex SG-80A Polyurethane (PU) films was modified by grafting polyethylene glycol (PEG) chains at three different molar amounts (0.05, 0.10, and 0.
View Article and Find Full Text PDFPolymers (Basel)
March 2022
The properties of biological-chemical chitosan (BCh) films from marine-industrial waste and a non-conventional Ramon starch (RS) () were investigated. Blended films of BCh/RS were prepared to a volume ratio of 4:1 and 1:4, named (BChRS-80+q, biological-chemical chitosan 80% / and Ramon starch, BChRS-20+q, biological-chemical chitosan 20% / and Ramon starch, both with quercetin), Films from commercial chitosan (CCh) and corn starch (CS), alone or blended (CChCS-80+q, commercial chitosan 80% / and corn starch, CChCS-20+q commercial chitosan 20% / and corn starch, both with quercetin) were also prepared for comparison purposes. Films were investigated for their physicochemical characteristics such as thickness, moisture, swelling, water-vapor permeability, and water solubility.
View Article and Find Full Text PDFThe effect of temperature (60, 70, 80, and 90 °C) and time (30, 45, 60, 75, and 90 min) on citric acid extraction of Haden mango ( L. cv. Haden) peel pectin was evaluated in the present study.
View Article and Find Full Text PDFElectrospun polymers are an example of multi-functional biomaterials that improve the material-cellular interaction and aimed at enhancing wound healing. The main objective of this work is to fabricate electrospun polyurethane membranes using arginine as chain extender (PUUR) in order to test the fibroblasts affinity and adhesion on the material and the polymer toxicity. Polyurethane membranes were prepared in two steps: (i) the polyurethane synthesis, and ii) the electrospinning process.
View Article and Find Full Text PDFRecently, different carbon-based nanomaterials have been used as reinforcing agents in acrylic bone cement formulations. Among them, graphene oxide (GO) has attracted the attention of scientific community since it could improve not only the mechanical properties but also the biocompatibility characteristics of these materials. However, using GO presents some drawbacks, such as its poor dispersion and lack of interaction with polymeric matrices, which should be prior resolved to achieve its optimal performance in acrylic bone cement.
View Article and Find Full Text PDFAn alternative for the production of drug delivery system is proposed based on the Ceiba pentandra milkweed. The kapok cellulose was chemically crosslinked with citric acid (CA) at different CA proportions, and loaded with chlorhexidine diacetate (CHX) at different concentrations. Cellulose crosslinking was followed with FTIR and XPS analysis, and the CHX loading was determined using elemental analysis.
View Article and Find Full Text PDFBackground: Bovine bone matrix is a natural material that has been used in the treatment of bone lesions. In this study, bovine bone matrix Nukbone® (NKB) was investigated due its osteoconductive and osteoinductive properties. This biomaterial induces CBFA-1 activation and osteogenic differentiation, although the cytokines involved in these processes is still unknown.
View Article and Find Full Text PDFThe aim of this work is to investigate the effect of the applied voltage on the morphological and mechanical properties of electrospun polycaprolactone (PCL) scaffolds for potential use in tissue engineering. The morphology of the scaffolds was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and the BET techniques for measuring the surface area and pore volume. Stress-strain curves from tensile tests were obtained for estimating the mechanical properties.
View Article and Find Full Text PDFIn this work, pH-sensitive hydrogel nanoparticles based on N-isopropyl acrylamide (NIPAM) and methacrylic acid (MAA) at various molar ratios, were synthesized and characterized in terms of physicochemical and biological properties. FTIR and HNMR spectra confirmed the successful synthesis of the copolymer that formed nanoparticles. AFM images and FE-SEM micrographs showed that nanoparticles were spherical, but their round-shape was slightly compromised with MAA content; besides, the size of particles tends to decrease as MAA content increased.
View Article and Find Full Text PDFJ Biomater Appl
October 2021
Polyglycerol sebacate (PGS) scaffolds obtained using a leaching technique were modified with iodine-doped polypyrrole (PPy-I) in a plasma reactor in order to study the effect of exposure time on the cell viability of hDPSCs. SEM analysis showed the formation and growth of PPy-I particles as the exposure time was increased, while FTIR and XPS analysis revealed the presence of -NH- and N+ groups in the chemical composition of the surfaces, relating to the increase in the amount of PPY-I particles. The water contact angle measurements showed an increase in the scaffold's hydrophilicity with greater exposure times which was also attributed to the rising of PPy-I particles.
View Article and Find Full Text PDFDisruption of the continuous cutaneous membrane in the integumentary system is considered a health problem of high cost for any nation. Several attempts have been made for developing skin substitutes in order to restore injured tissue including autologous implants and the use of scaffolds based on synthetic and natural materials. Current biomaterials used for skin tissue repair include several scaffold matrices types, synthetic or natural, absorbable, degradable or non-degradable polymers, porous or dense scaffolds, and cells capsulated in hydrogels or spheroids systems so forth.
View Article and Find Full Text PDFCopper nanoparticles (NCu) were synthetized and added to commercial glass ionomer cement, to evaluate in vitro its antibacterial activity against oral cavity strains. The NCu were synthesized by copper acetate reduction with L-ascorbic acid and characterized by FTIR, Raman, XPS, XRD and TEM. Then, commercial glass ionomer cement (GIC) was modified (MGIC) with various concentrations of NCu and physicochemically characterized.
View Article and Find Full Text PDFBis-GMA/TTEGDMA-based resin composites were prepared with two different types of nanoclays: an organically modified laminar clay (Cloisite 30B, montmorillonite, MMT) and a microfibrous clay (palygorskite, PLG). Their physicochemical and mechanical properties were then determined. Both MMT and PLG nanoclays were added into monomer mixture (1:1 ratio) at different loading levels (0, 2, 4, 6, 8 and 10 wt.
View Article and Find Full Text PDFIn this research, damage in bone cements that were prepared with core-shell nanoparticles was monitored during four-point bending tests through an analysis of acoustic emission (AE) signals. The core-shell structure consisted of poly(butyl acrylate) (PBA) as rubbery core and methyl methacrylate/styrene copolymer (P(MMA--St)) as a glassy shell. Furthermore, different core-shell ratios 20/80, 30/70, 40/60, and 50/50 were prepared and incorporated into the solid phase of the bone cement formulation at 5, 10, and 15 wt %, respectively.
View Article and Find Full Text PDFChitosan (CHT) is a polysaccharide with multiple claimed properties and outstanding biocompatibility, generally attributed to the presence of protonable amino groups rendering a cationic natural polymer. However, the effect of changes in CHT structure due to hydration is not considered in its performance. This study compares the effects on biocompatibility after drying at 25 °C and 150 °C scaffolds of chitosan, polyethylene glycol diglycidyl ether (PEGDE) crosslinked CHT (low, medium and high concentration) and glutaraldehyde (GA) crosslinked CHT.
View Article and Find Full Text PDFPolyurethanes (PU) foams with titanium particles (Ti) were prepared with castor oil (CO) and isophorone diisocyanate (IPDI) as polymeric matrix, and 1, 3 and 5 wt.% of Ti. Composites were physicochemically and mechanically characterized and their biocompatibility assessed using human dental pulp stem cells (HDPSC).
View Article and Find Full Text PDFSegmented polyurethanes were prepared with polycaprolactone diol as soft segment and various amounts of 4,4´-Methylenebis(cyclohexyl isocyanate) and atorvastatin, a statin used for lowering cholesterol, in order to obtain SPU with different content of rigid segments. Polyurethanes with 35% or 50% of rigid segment content were physicochemically characterized and their biocompatibility assessed with L929 fibroblasts. High concentrations of atorvastatin were incorporated by increasing the content of rigid segments as shown by FTIR, Raman, NMR, XPS and EDX.
View Article and Find Full Text PDFElemental composition, physical dimensions (length and apparent diameter), and crystallinity of different types of naturally colored cotton (NCCs) fibers from Peru were investigated using a CHNS organic elemental analyzer, optical microscopy and X-Ray Diffraction (XRD). Spectroscopic studies involving Fourier Transform Infrared Spectroscopy and X-Ray photoelectron spectroscopy (XPS) were conducted; and the thermal stability of cotton samples were also investigated. Results from organic elemental analyzer and XPS showed that cotton samples contain mainly carbon, oxygen and hydrogen, but darker color samples also presented nitrogen.
View Article and Find Full Text PDF