Publications by authors named "Certik O"

Electronic transport properties of warm dense matter, such as electrical or thermal conductivities and nonadiabatic stopping power, are of particular interest to geophysics, planetary science, astrophysics, and inertial confinement fusion (ICF). One example is the α-particle stopping power of dense deuterium-tritium (DT) plasmas, which must be precisely known for current small-margin ICF target designs to ignite. We have developed a time-dependent orbital-free density functional theory (TD-OF-DFT) method for ab initio investigations of the charged-particle stopping power of warm dense matter.

View Article and Find Full Text PDF

We use classical molecular dynamics (MD) to study electron-ion temperature equilibration in two-component plasmas in regimes for which the presence of coupled collective modes has been predicted to substantively reduce the equilibration rate. Guided by previous kinetic theory work, we examine hydrogen plasmas at a density of n=10^{26}cm^{-3}, T_{i}=10^{5}K, and 10^{7}K View Article and Find Full Text PDF