Am J Physiol Heart Circ Physiol
March 2003
We tested the hypothesis that myocardial ischemia-reperfusion (I/R)-induced apoptosis is attenuated in transgenic mice overexpressing cardiac A(1) adenosine receptors. Isolated hearts from transgenic (TG, n = 19) and wild-type (WT, n = 22) mice underwent 30 min of ischemia and 2 h of reperfusion, with evaluation of apoptosis, caspase 3 activity, function, and necrosis. I/R-induced apoptosis was attenuated in TG hearts.
View Article and Find Full Text PDFMyocardial A1 adenosine receptor (A1AR) overexpression protects hearts from ischemia-reperfusion injury; however, the effects during anoxia are unknown. We evaluated responses to anoxia-reoxygenation in wild-type (WT) and transgenic (Trans) hearts with approximately 200-fold overexpression of A1ARs. Langendorff perfused hearts underwent 20 min anoxia followed by 30 min reoxygenation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2002
Previous studies have shown that high-level (300-fold normal) cardiac overexpression of A1-adenosine receptors (A1-ARs) in transgenic (TG) mice protects isolated hearts against ischemia-reperfusion injury. However, this high level of overexpression is associated with bradycardia and increased incidence of arrhythmia during ischemia in intact mice, which interfered with studies to determine whether this line of TG mice might also be protected against myocardial infarction (MI) in vivo. For these studies, we therefore selected a line of TG mice that overexpresses the A1-AR at more moderate levels (30-fold normal), which affords cardioprotection in the isolated heart while minimizing bradycardia and arrhythmia during ischemia in intact mice.
View Article and Find Full Text PDFObjective: We investigated the effect of A(1) adenosine receptor overexpression, which has been reported to increase myocardial tolerance to ischemia-reperfusion injury, on sarcoplasmic reticulum (SR) Ca(2+) handling.
Methods: Transgenic mouse hearts (approximately 300-fold A(1) adenosine receptor overexpression) and wild-type mouse hearts were perfused in the Langendorff mode and subjected either to 80 min of aerobic perfusion or to 30 min of aerobic perfusion, 20 min of global ischemia and 30 min of reperfusion. The hearts were then homogenized and used to assay SR oxalate-supported 45Ca(2+) uptake and [3H]-ryanodine binding.
Objectives: To characterize effects of A(3) adenosine receptor (A(3)AR) activation and gene knock-out on responses to ischemia-reperfusion in mouse heart.
Methods: Perfused hearts from wild-type and A(3)AR gene knock-out (A(3)AR KO) mice were subjected to 20 min ischemia and 30 min reperfusion. Functional responses were assessed and changes in energy metabolism and cytosolic pH monitored via 31P-NMR spectroscopy.
Am J Physiol Heart Circ Physiol
October 2001
A(3) adenosine receptors (A(3)ARs) have been implicated in regulating mast cell function and in cardioprotection during ischemia-reperfusion injury. The physiological role of A(3)ARs is unclear due to the lack of widely available selective antagonists. Therefore, we examined mice with targeted gene deletion of the A(3)AR together with pharmacological studies to determine the role of A(3)ARs in myocardial ischemia-reperfusion injury.
View Article and Find Full Text PDFObjectives: To characterize the 'anti-ischemic' effects of adenosine metabolism inhibition in ischemic-reperfused myocardium.
Methods: Perfused C57/B16 mouse hearts were subjected to 20 min ischemia 40 min reperfusion in the absence or presence of adenosine deaminase inhibition (50 microM erythro-2-(2-hydroxy-3-nonyl)adenine; EHNA) adenosine kinase inhibition (10 microM iodotubercidin; IODO), or 10 microM adenosine. Hearts overexpressing A(1) adenosine receptors (A(1)ARs) were also studied.