Publications by authors named "Ceri-Wyn Thomas"

The Early Cambrian organism Olivooides is known from both embryonic and post-embryonic stages and, consequently, it has the potential to yield vital insights into developmental evolution at the time that animal body plans were established. However, this potential can only be realized if the phylogenetic relationships of Olivooides can be constrained. The affinities of Olivooides have proved controversial because of the lack of knowledge of the internal anatomy and the limited range of developmental stages known.

View Article and Find Full Text PDF

The Ediacaran Doushantuo biota has yielded fossils that include the oldest widely accepted record of the animal evolutionary lineage, as well as specimens with alleged bilaterian affinity. However, these systematic interpretations are contingent on the presence of key biological structures that have been reinterpreted by some workers as artefacts of diagenetic mineralization. On the basis of chemistry and crystallographic fabric, we characterize and discriminate phases of mineralization that reflect: (i) replication of original biological structure, and (ii) void-filling diagenetic mineralization.

View Article and Find Full Text PDF

Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally.

View Article and Find Full Text PDF

Experimental analyses of decay in a tunicate deuterostome and three lophotrochozoans indicate that the controls on decay and preservation of embryos, identified previously based on echinoids, are more generally applicable. Four stages of decay are identified regardless of the environment of death and decay. Embryos decay rapidly in oxic and anoxic conditions, although the gross morphology of embryos is maintained for longer under anoxic conditions.

View Article and Find Full Text PDF