Publications by authors named "Ceri A Morris"

WounD14 (WD14) gene signature is a recently developed tool derived from genetic interrogation of wound edge biopsies of chronic venous leg ulcers to identify heard-to-heal wounds and enable clinicians to target aggressive therapies to promote wound healing. This study aimed to evaluate if changes in wound clinical healing status were detected by the WD14 gene signature over time as this is currently poorly understood. WD14 was developed through gene screening and subsequent validation in 3 patient cohorts involving 85 consecutive patients with chronic venous leg ulcers referred to a tertiary wound healing unit.

View Article and Find Full Text PDF

Techniques that quantify molecular endpoints sufficiently sensitive to identify and classify potentially toxic compounds have wide potential for high-throughput in vitro screening. Expression of three genes, RAD51C, TP53 and cystatin A (CSTA), in HEPG2 cells was measured by Q-PCR amplification. In parallel, we developed alternative assays for the same 3 gene signature based on an acridinium-ester chemiluminescent reporter molecule.

View Article and Find Full Text PDF

Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner.

View Article and Find Full Text PDF

The macro-alga Fucus vesiculosus has a broad global and estuarine distribution and exhibits exceptional resistance to toxic metals, the molecular basis of which is poorly understood. To address this issue a cDNA library was constructed from an environmental isolate of F. vesiculosus growing in an area with chronic copper pollution.

View Article and Find Full Text PDF

We describe a whole-mount RNA in situ hybridization (ISH) method optimized for detection of the cellular and subcellular distributions of specific mRNA within Drosophila testes and male genital tract. Digoxygenin (dig)-labeled antisense RNA probes are in vitro transcribed from a template synthesized by (RT)-PCR; the probe length is reduced by hydrolysis. Testes and male genital tracts are dissected from adult flies, fixed and processed for hybridization.

View Article and Find Full Text PDF

An assay based on transcription-mediated amplification (TMA) technology was used to quantitate Enterococcus fecal indicator bacteria in environmental water samples. The results generated by this and two growth-based methods relative to the 104 most-probable-number or CFU-per-100-ml threshold show that the three methods are in good qualitative agreement when tested against a range of water samples taken from different locations. The results demonstrate sensitive and rapid detection (approximately 4 h from sample collection to result) and quantitation of Enterococcus bacteria compared to the results with the growth-based methods.

View Article and Find Full Text PDF