Doxorubicin (Dox), a chemotherapeutic agent, encounters challenges such as a short half-life, dose-dependent toxicity, and low solubility. In this context, the present study involved the fabrication of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) bearing P(HPMA-s-APMA) copolymeric nanoparticles (P(HPMA-s-APMA) NPs) and their investigation for efficient delivery of Dox. Furthermore, the synthesized nanoparticles (NPs) were coated with chitosan (Cht) to generate positively charged nanoformulations.
View Article and Find Full Text PDFThe present study demonstrate the first time usage of poly (HPMA-s-GPMA) copolymer for the fabrication of three-component based aptasensor for simple, selective, rapid and label free detection of arsenite (As). For this purpose, guanidinium bearing poly (HPMA-s-GPMA) copolymer and MPA-CdTe@CdS quantum dots (QDs) was employed in conjunction with As specific aptamer. This protocol utilizes the quenching phenomena displayed by QDs due to the competitive binding of As ions and cationic copolymer to the aptamer.
View Article and Find Full Text PDFThis study describes the first example for shielding of a high performing terpolymer that consists of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl)methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by block copolymerization of a polyethylene glycol derivative - poly(nona(ethylene glycol)methyl ether methacrylate) (P(MEO MA)) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The molecular weight of P(MEO MA) is varied from 3 to 40 kg mol while the comonomer content of HPMA, GPMA, and IEMA is kept comparable. The influence of P(MEO MA) block with various molecular weights is investigated over cytotoxicity, plasmid DNA (pDNA) binding, and transfection efficiency of the resulting polyplexes.
View Article and Find Full Text PDFThis report highlights the importance of hydrophobic groups mimicking the side chains of aromatic amino acids, which are tryptophan, phenylalanine, and tyrosine, in guanidinium bearing poly(methacrylamide)s for the design of non-viral gene delivery agents. Guanidinium containing methacrylamide terpolymers are prepared by aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization with different hydrophobic monomers, N-(2-indolethyl)methacrylamide (IEMA), N-phenethylmethacrylamide (PhEMA), or N-(4-hydroxyphenethyl)methacrylamide (PhOHEMA) by aiming similar contents. The well-defined polymers are obtained with a molar mass of ≈15 000 g mol and ≈1.
View Article and Find Full Text PDFA highly efficient transfection agent is reported that is based on terpolymer consisting of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl) methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by analogy to the amphipathic cell-penetrating peptides containing tryptophan and arginine residues. The incorporation of the indole-bearing monomer leads to successful plasmid DNA condensation even at a nitrogen-to-phosphate (N/P) ratio of 1. The hydrodynamic diameter of polyplexes is determined to be below 200 nm for all N/P ratios.
View Article and Find Full Text PDFHerein, we report the first gradient guanidinium containing cationic copolymers and investigate their binding ability to plasmid DNA (pDNA). To understand the effect of different charge distributions and cationic charge sources (primary amines vs. guanidinium group) on (pDNA) binding affinity, we synthesized a library of well-defined statistical cationic copolymers comprising N-(2-hydroxy-propyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) or N-(3-guanidinopropyl)methacrylamide (GPMA) and compared them with gradient polymers containing the same monomers of similar composition.
View Article and Find Full Text PDF