We report on laser cooling of a large fraction of positronium (Ps) in free flight by strongly saturating the 1^{3}S-2^{3}P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects.
View Article and Find Full Text PDFInterferometric methods for detecting the motion of a levitated nanoparticle provide a route to the quantum ground state, but such methods are currently limited by mode mismatch between the reference beam and the dipolar field scattered by the particle. Here we demonstrate a self-interference method to detect the particle's motion that solves this problem. A Paul trap confines a charged dielectric nanoparticle in high vacuum, and a mirror retro-reflects the scattered light.
View Article and Find Full Text PDFEur Phys J E Soft Matter
December 2021
The autocorrelation function is a statistical tool that is often combined with dynamic light scattering (DLS) techniques to investigate the dynamical behavior of the scattered light fluctuations in order to measure, for example, the diffusive behavior of transparent particles dispersed in a fluid. An alternative approach to the autocorrelation function for the analysis of DLS data has been proposed decades ago and consists of calculating the autocorrelation function starting from difference of the signal at different times by using the so-called structure function. The structure function approach has been proven to be more robust than the autocorrelation function method in terms of noise and drift rejection.
View Article and Find Full Text PDFWe demonstrate an optical method for detecting the mechanical oscillations of an atom with single-phonon sensitivity. The measurement signal results from the interference between the light scattered by a trapped atomic ion and that of its mirror image. We detect the oscillations of the atom in the Doppler cooling limit and reconstruct average trajectories in phase space.
View Article and Find Full Text PDFWe present the design and construction of a new experimental apparatus for the trapping of single Ba ions in the center of curvature of an optical-quality hemispherical mirror. We describe the layout, fabrication, and integration of the full setup, consisting of a high-optical access monolithic "3D-printed" Paul trap, the hemispherical mirror, a diffraction-limited in-vacuum lens (NA = 0.7) for collection of atomic fluorescence, and a state-of-the art ultra-high vacuum vessel.
View Article and Find Full Text PDFWe report the first cooling of atomic anions by laser radiation. O^{-} ions confined in a linear Paul trap were cooled by selectively photodetaching the hottest particles. For this purpose, anions with the highest total energy were illuminated with a 532 nm laser at their maximal radial excursion.
View Article and Find Full Text PDFExperiments with antihydrogen (H[over ¯]) for a study of matter-antimatter symmetry and antimatter gravity require ultracold H[over ¯] to reach ultimate precision. A promising path towards antiatoms much colder than a few kelvin involves the precooling of antiprotons by laser-cooled anions. Because of the weak binding of the valence electron in anions-dominated by polarization and correlation effects-only few candidate systems with suitable transitions exist.
View Article and Find Full Text PDFThe efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom.
View Article and Find Full Text PDFThe bound-bound transition from the 5d^{2}6s^{2} ^{3}F_{2}^{e} ground state to the 5d6s^{2}6p ^{3}D_{1}^{o} excited state in negative lanthanum has been proposed as a candidate for laser cooling, which has not yet been achieved for negative ions. Anion laser cooling holds the potential to allow the production of ultracold ensembles of any negatively charged species. We have studied the aforementioned transition in a beam of negative La ions by high-resolution laser spectroscopy.
View Article and Find Full Text PDFThe precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons.
View Article and Find Full Text PDFWe present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit. We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions.
View Article and Find Full Text PDF