Publications by authors named "Cerasela Z Dinu"

Article Synopsis
  • Organomodified nanoclays (ONC) are used to enhance nanocomposite properties but their health risks, especially related to lung inflammation, are not well understood.
  • Recent experiments showed that exposure to ONC in mice led to chronic lung inflammation, prompting a hypothesis that the type of nanoclay and its incineration status affect the immune response in macrophages.
  • Research revealed that different ONCs induced varying degrees of cell damage and inflammation in human macrophages, with incineration reducing harmful effects, indicating complex interactions in biological responses to these materials.
View Article and Find Full Text PDF

This chapter describes compiled methods for the formation and manipulation of microtubule-kinesin-carbon nanodots conjugates in user-defined synthetic environments. Specifically, by using inherited self-assembly and self-recognition properties of tubulin cytoskeletal protein and by interfacing this protein with lab synthesized carbon nanodots, bio-nano hybrid interfaces were formed. Further manipulation of such biohybrids under the mechanical cycle of kinesin 1 ATP-ase molecular motor led to their integration on user-controlled engineered surfaces.

View Article and Find Full Text PDF

Enzymes are proteins that control the efficiency and effectiveness of biological reactions and systems, as well as of engineered biomimetic processes. This review highlights current applications of a diverse range of enzymes for biofuel production, plastics, and chemical waste management, as well as for detergent, textile, and food production and preservation industries respectively. Challenges regarding the transposition of enzymes from their natural purpose and environment into synthetic practice are discussed.

View Article and Find Full Text PDF

Properties such as large surface area, high pore volume, high chemical and thermal stability, and structural flexibility render zeolitic imidazolate frameworks (ZIFs) well-suited materials for gas separation, chemical sensors, and optical and electrical devices. For such applications, film processing is a prerequisite. Herein, matrix-assisted pulsed laser evaporation (MAPLE) was successfully used as a single-step deposition process to fabricate ZIF-8 films.

View Article and Find Full Text PDF

Carbonic anhydrases are enzymes capable of transforming carbon dioxide into bicarbonate to maintain functionality of biological systems. Synthetic isolation and implementation of carbonic anhydrases into membrane have recently raised hopes for emerging and efficient strategies that could reduce greenhouse emission and the footprint of anthropogenic activities. However, implementation of such enzymes is currently challenged by the resulting membrane's wetting capability, overall membrane performance for gas sensing, adsorption and transformation, and by the low solubility of carbon dioxide in water, the required medium for enzyme functionality.

View Article and Find Full Text PDF

Certain nanosized particles like carbon nanotubes (CNTs) are known to induce pulmonary fibrosis, but the underlying mechanisms are unclear, and efforts to prevent this disease are lacking. Fibroblast-associated stem cells (FSCs) have been suggested as a critical driver of fibrosis induced by CNTs by serving as a renewable source of extracellular matrix-producing cells; however, a detailed understanding of this process remains obscure. Here, we demonstrated that single-walled CNTs induced FSC acquisition and fibrogenic responses in primary human lung fibroblasts.

View Article and Find Full Text PDF
Article Synopsis
  • GQDs and CQDs are advanced nanomaterials known for their unique quantum properties and biocompatibility, making them valuable in fields like biosensing and analyte detection.
  • This review focuses on the recent advancements in biotransducers and biosensors utilizing these materials, highlighting their interactions with biomolecules to enhance detection efficiency.
  • It also provides insights into biosensor designs, discusses key properties of GQDs and CQDs, and offers suggestions to drive future research in the development of quality and safety-focused biosensors.
View Article and Find Full Text PDF

Background: Cardiac glycosides (CGs), such as digitoxin, are traditionally used for treatment of congestive heart failure; recently they also gained attention for their anticancer properties. Previous studies showed that digitoxin and a synthetic L-sugar monosaccharide analog treatment decreases cancer cell proliferation, increases apoptosis, and pro-adhesion abilities; however, no reports are available on their potential to alter lung cancer cell cytoskeleton structure and reduce migratory ability. Herein, we investigated the anticancer effects of digitoxin and its analog, digitoxigenin-α-L-rhamnoside (D6MA), to establish whether cytoskeleton reorganization and reduced motility are drug-induced cellular outcomes.

View Article and Find Full Text PDF

Manufacturing, processing, use, and disposal of nanoclay-enabled composites potentially lead to the release of nanoclay particles from the polymer matrix in which they are embedded; however, exposures to airborne particles are poorly understood. The present study was conducted to characterize airborne particles released during sanding of nanoclay-enabled thermoplastic composites. Two types of nanoclay, Cloisite® 25A and Cloisite® 93A, were dispersed in polypropylene at 0%, 1%, and 4% loading by weight.

View Article and Find Full Text PDF

Incorporation of engineered nanomaterials (ENMs) into nanocomposites using advanced manufacturing strategies is set to revolutionize diverse technologies. Of these, organomodified nanoclays (ONCs; i.e.

View Article and Find Full Text PDF

Advancing ultrahigh resolution (below 10 nm) direct writing technologies could lead to impacts in areas as diverse as disease detection, genetic analysis and nanomanufacturing. Current methods based on electron-beams and photo- or dip-pen nanolithography are laborious and lack flexibility when aiming to create single molecule patterns for application specific integration. We hypothesize that a novel strategy could be developed to allow for writing of parallel and yet individually addressable patterns of single molecules on user-controlled surfaces.

View Article and Find Full Text PDF

Introduction: The flexibility and tunability of metal organic frameworks (MOFs), crystalline porous materials composed of a network of metal ions coordinated by organic ligands, confer their variety of applications as drug delivery systems or as sensing and imaging agents. However, such properties also add to the difficulty in ensuring their safe implementation when interaction with biological systems is considered.

Methods: In the current study, we used real-time sensorial strategies and cellular-based approaches to allow for fast and effective screening of two MOFs of prevalent use, namely, MIL-160 representative of a hydrophilic and ZIF-8 representative of a hydrophobic framework.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE), an efficient biocatalyst known to hydrolyze the neurotransmitter acetylcholine, could be inactivated in the presence of insecticides, nerve agents or other drug inhibitors to thus result in disrupted neurotransmission. Improvement in the peripheral cholinergic function, as well as overall cognition and neuronal functions of an exposed system could be achieved if the mechanisms of inhibitions are deactivated in a controlled fashion and with rapid response time. Herein, we proposed to develop a simple AChE biosensor capable to realize the rapid detection of neurotoxins.

View Article and Find Full Text PDF

Photocatalytic properties of 2,5-furandicarboxylic acid (FDCA), a model organic molecule used for biopolymer production, are reported for the first time. Further integration of FDCA into metal-organic framework (MOF) structures and subsequent silver-based photoactivation leads to the next generation of hybrids with controlled morphologies, capable of forming sensorial platforms for prevalent phenol contaminant detection. The mechanisms that allow photocatalytic functionality are driven by the charge carrier generation in the organic molecule (either in its alone or integrated form) and depend on sample's physical and chemical properties as confirmed by scanning and transmission electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy, and X-ray diffraction, respectively.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are a key driver of tumor formation and metastasis, but how they are affected by nanomaterials is largely unknown. The present study investigated the effects of different carbon-based nanomaterials (CNMs) on neoplastic and CSC-like transformation of human small airway epithelial cells and determined the underlying mechanisms. Using a physiologically relevant exposure model (long-term/low-dose) with system validation using a human carcinogen, asbestos, we demonstrated that single-walled carbon nanotubes, multi-walled carbon nanotubes, ultrafine carbon black, and crocidolite asbestos induced particle-specific anchorage-independent colony formation, DNA-strand break, and p53 downregulation, indicating genotoxicity and carcinogenic potential of CNMs.

View Article and Find Full Text PDF

This research proposed to create the next generation of versatile electrochemical-based biosensors capable of monitoring target capture and release as dictated by molecular binding or unbinding. The biosensor integrates cellular machines (i.e.

View Article and Find Full Text PDF

Carbonic anhydrase (CA) was previously proposed as a green alternative for biomineralization of carbon dioxide (CO). However, enzyme's fragile nature when in synthetic environment significantly limits such industrial application. Herein, we hypothesized that CA immobilization onto flexible and hydrated "bridges" that ensure proton-transfer at their interfaces leads to improved activity and kinetic behavior and potentially increases enzyme's feasibility for industrial implementation.

View Article and Find Full Text PDF

Fibroblast stem cells or stemlike cells (FSCs) are proposed to play a pivotal role in extracellular matrix (ECM) regeneration by serving as a key source of ECM-producing fibroblasts. We developed a mechanism-based in vitro model for fibrogenicity testing of nanomaterials based on their ability to induce FSCs. Using a FSC-enriched fibroblast focus model to mimic in vivo fibrogenic response, we demonstrated a dose-dependent increase in fibroblast focus formation and collagen production by primary lung fibroblasts treated with multiwalled carbon nanotubes (MWCNTs).

View Article and Find Full Text PDF

Addition of nanoclays into a polymer matrix leads to nanocomposites with enhanced properties to be used in plastics for food packaging applications. Because of the plastics' high stored energy value, such nanocomposites make good candidates for disposal via municipal solid waste plants. However, upon disposal, increased concerns related to nanocomposites' byproducts potential toxicity arise, especially considering that such byproducts could escape disposal filters to cause inhalation hazards.

View Article and Find Full Text PDF

Free-standing, high aspect ratio sulfur-doped carbon nanodot-based hybrid nanowires with a microtubular aspect were synthesized using self-recognition and self-assembly processes of tubulin, a biological molecule precursor of the cytoskeletal microtubule. Physicochemical characterizations (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Organomodified nanoclays (ONCs) show promise in improving the strength and durability of nanocomposites, but their pulmonary health risks during exposure remain unclear.
  • This study compared the inflammatory and toxic effects of both coated and uncoated nanoclays in mice after pre- and post-incineration, finding that high doses of ONCs can lead to varying levels of lung inflammation and damage.
  • Results indicated that while uncoated nanoclay caused significant inflammation, coated and incinerated forms resulted in lower inflammatory responses, suggesting potential hazards for long-term exposure in occupational settings.
View Article and Find Full Text PDF

The unique properties of single walled carbon nanotubes (SWCNTs) make them viable candidates for versatile implementation in the next generation of biomedical devices for targeted delivery of chemotherapeutic agents or cellular-sensing probes. Such implementation requires user-tailored changes in SWCNT's physicochemical characteristics to allow for efficient cellular integration while maintaining nanotubes' functionality. However, isolated reports showed that user-tailoring could induce deleterious effects in exposed cells, from decrease in cellular proliferation, to changes in cellular adhesion, generation of reactive oxygen species or phenotypical variations, just to name a few.

View Article and Find Full Text PDF

Engineered nanomaterials hold great promise for the future development of innovative products but their adverse health effects are a major concern. Recent studies have indicated that certain nanomaterials, including carbon nanotubes (CNTs), may be carcinogenic. However, the underlying mechanisms behind their potential malignant properties remain unclear.

View Article and Find Full Text PDF

Nanoclays' functionalization with organic modifiers increases their individual barrier properties, thermal stability, and mechanical properties and allows for ease of implementation in food packaging materials or medical devices. Previous reports have shown that, while organic modifiers integration between the layered mineral silicates leads to nanoclays with different degrees of hydrophobicity that become easily miscible in polymers, they could also pose possible effects at inhalation or ingestion routes of exposure. Through a systematic analysis of three organically modified and one pristine nanoclay, we aimed to relate for the first time the physical and chemical characteristics, determined via microscopical and spectroscopical techniques, with the potential of these nanoclays to induce deleterious effects in in vitro cellular systems, i.

View Article and Find Full Text PDF