Proteases are critical enzymes in cellular processes which regulate intricate events like cellular proliferation, differentiation and apoptosis. This review highlights the multifaceted roles of the serine proteases FAM111A and FAM111B, exploring their impact on cellular functions and diseases. FAM111A is implicated in DNA replication and replication fork protection, thereby maintaining genome integrity.
View Article and Find Full Text PDFIntroduction: Mutations in the uncharacterised human FAM111B gene are associated with POIKTMP, a rare multi-organ fibrosing disease. Recent studies also reported the overexpression of FAM111B in specific cancers. Moreover, FAM111B mutation screening may prove expensive in under-resourced facilities.
View Article and Find Full Text PDFgene mutations are associated with a hereditary fibrosing poikiloderma known to cause poikiloderma, tendon contracture, myopathy, and pulmonary fibrosis (POIKTMP). In addition, the overexpression of FAM111B has been associated with cancer progression and poor prognosis. This review inferred the molecular function of this gene's protein product and mutational dysfunction in fibrosis and cancer based on recent findings from studies on this gene.
View Article and Find Full Text PDFMutations in the human FAM111B gene are associated with a rare, hereditary multi-systemic fibrosing disease, POIKTMP. To date, there are ten POIKTMP-associated FAM111B gene mutations reported in thirty-six patients from five families globally. To investigate the clinical significance of these mutations, we summarized individual cases by clinical features and position of the reported FAM111B gene mutations as those within and outside the putative protease domain (MWPPD and MOPPD respectively).
View Article and Find Full Text PDF